153 resultados para Iron Overload


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha-1-antitrypsin (A1AT) deficiency is characterized by increased neutrophil elastase (NE) activity and oxidative stress in the lung. We hypothesized that NE exposure generates reactive oxygen species by increasing lung nonheme iron. To test this hypothesis, we measured bronchoalveolar lavage (BAL) iron and ferritin levels, using inductively coupled plasma (ICP) optical emission spectroscopy and an ELISA, respectively, in A1AT-deficient patients and healthy subjects. To confirm the role of NE in regulating lung iron homeostasis, we administered intratracheally NE or control buffer to rats and measured BAL and lung iron and ferritin. Our results demonstrated that A1AT-deficient patients and rats postelastase exposure have elevated levels of iron and ferritin in the BAL. To investigate the mechanism of NE-induced increased iron levels, we exposed normal human airway epithelial cells to either NE or control vehicle in the presence or absence of ferritin, and quantified intracellular iron uptake using calcein fluorescence and ICP mass spectroscopy. We also tested whether NE degraded ferritin in vitro using ELISA and western analysis. We demonstrated in vitro that NE increased intracellular nonheme iron levels and degraded ferritin. Our results suggest that NE digests ferritin increasing the extracellular iron pool available for cellular uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.

METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.

RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.

CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes an approach for quantifying microsphere deposition onto iron-oxide-coated sand under the influence of adsorbed Suwannee River Humic Acid (SRHA). The experimental technique involved a triple pulse injection of model latex microspheres (microspheres) in pulses of (1) microspheres, followed by (2) SRHA, and then (3) microspheres, into a column filled with iron-coated quartz sand as a water-saturated porous medium. A random sequential adsorption model (RSA) simulated the gradual rise in the first (microsphere) breakthrough curve (BTC). Using the same model calibration parameters a dramatic increase in concentration at the start of the second particle BTC, generated after SRHA injection, could be simulated by matching microsphere concentrations to extrapolated RSA output. RSA results and microsphere/SRHA recoveries showed that 1 mg of SRHA could block 5.90 plus or minus 0.14 x 10^9 microsphere deposition sites. This figure was consistent between experiments injecting different SRHA masses, despite contrasting microsphere deposition/release regimes generating the second microsphere BTC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper advances findings of Yang et al. 2010 and reports on how slight changes in pH or Ionic strength can significantly alter particle behaviour in porous media, when humic acids have been deposited beforehand. .

Relevância:

20.00% 20.00%

Publicador: