63 resultados para Indians, North American


Relevância:

80.00% 80.00%

Publicador:

Resumo:

While reading times are often used to measure working memory load, frequency effects (such as surprisal or n-gram frequencies) also have strong confounding effects on reading times. This work uses a naturalistic audio corpus with magnetoencephalographic (MEG) annotations to measure working memory load during sentence processing. Alpha oscillations in posterior regions of the brain have been found to correlate with working memory load in non-linguistic tasks (Jensen et al., 2002), and the present study extends these findings to working memory load caused by syntactic center embeddings. Moreover, this work finds that frequency effects in naturally-occurring stimuli do not significantly contribute to neural oscillations in any frequency band, which suggests that many modeling claims could be tested on this sort of data even without controlling for frequency effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Excessive activation of epithelial sodium channels (ENaC) contributes to CF lung pathophysiology due to the resultant dehydration of the airway surface liquid (ASL) and impaired mucociliary clearance. Regulated proteolysis of the endogenous α and γ subunits of ENaC by apical membrane-bound Channel Activating Proteases (CAPs) is a fundamental regulatory mechanism for channel activity. In the CF lung a stark imbalance between the levels of CAPs and their natural inhibitors drives the activation of normally inactive ENaC. On this basis inhibition of CAPs-ENaC signalling represents a potential therapeutic intervention. To this end we have developed a novel cell impermeable active-site directed compound (QUB-TL1) designed to inactivate key trypsin-like CAPs highly relevant in this regard. Objectives & Methods: Utilize differentiated non-CF and CF human airway epithelial cells to assess the impact of QUB-TL1 on a range of parameters including surface CAP activities, ENaC subunit processing/channel activity, ASL height and mucociliary clearance. Results: Treatment of airway epithelial cells with QUB-TL1 results in the significant downregulation of key endogenous CAP activities found to be excessively active at the surface of CF cultures. QUB-TL1-mediated CAP inhibition subsequently causes the internalisation of a pool of processed (active) ENaCγ prominent at the apical surface of CF cultures which correlates with a decline in channel activity. This downregulation of ENaC activity results in an increase in ASL height and improved mucociliary clearance in CF cells. We further find QUB-TL1 uniquely inhibits the ENaC activating enzyme furin, which is in contrast to the alternate trypsin-like CAP inhibitors camostat mesylate and aprotinin. QUB-TL1-mediated furin inhibition correlates with a reduction in neutrophil elastase-induced ENaC activation. Moreover we find QUB-TL1 treatment protects CF cultures from Pseudomonas aeruginosa exotoxin A-induced cytotoxicity. Pseudomonas aeruginosa exotoxin A is a major toxic product activated by furin and positively associated with mortality. Conclusion: The novel inhibitor (QUB-TL1) dampens CAPs-ENaC signalling which improves hydration status mucociliary clearance in CF airway epithelial cell cultures. Moreover this compound provides additional benefit by preventing Pseudomonas aeruginosa exotoxin A-induced cytotoxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Neutrophil elastase (NE) is a serine protease implicated in the pathogenesis of several respiratory diseases including cystic fibrosis (CF). The presence of free NE in BAL is a predictor of subsequent bronchiectasis in children with CF (Sly et al, 2013, NEJM 368: 1963-1970). Furthermore, children with higher levels of sputum NE activity (NEa) tend to experience a more rapid decline in FEV1 over time even after adjusting for age, gender and baseline FEV1 (Sagel et al, 2012, AJRCCM 186: 857-865). Its detection and quantification in biological samples is however confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel assay (ProteaseTag™ Active NE Immunoassay), which couples an activity dependent NE-Tag with a specific antibody step, resulting in an assay which is both selective and specific for NEa. Aims: To clinically validate ProteaseTag™ Active NE for the detection of free NEa in BAL from children with CF. Methods: A total of 95 paediatric BAL samples [CF (n=76; 44M, 32F) non-CF (n=19; 12M, 7F)] collected through the Study of Host Immunity and Early Lung Disease in CF (SHIELD CF) were analysed for NEa using ProteaseTag™ Active NE (ProAxsis Ltd) and a fluorogenic substrate-based assay utilising Suc-AAPV-AMC (Sigma). IL-8 was measured by ELISA (R&D Systems). Results were analysed to show comparisons in free NEa between CF and non-CF samples alongside correlations with a range of clinical parameters. Results: NEa measured by ProteaseTag™ Active NE correlated significantly with age (r=0.3, p=0.01) and highly significantly with both IL-8 (r=0.4, p=<0.0001) and the absolute neutrophil count (ANC) (r=0.4, p=<0.0001). These correlations were not observed when NEa was measured by the substrate assay even though a significant correlation was found between the two assays (r=0.8, p<0.0001). A trend towards significance was found between NEa in the CF and non-CF groups when measured by ProteaseTag™ Active NE (p=0.07). Highly significant differences were found with the other inflammatory parameters between the 2 groups (IL-8: p=0.0002 and ANC: p=0.006). Conclusion: NEa as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE has been shown to be a specific and superior tool in the measurement of NEa in paediatric CF BAL samples (supporting data from previous studies using adult CF expectorated samples). The technology is currently being transferred to a lateral flow device for use at Point of Care. Acknowledgements: This work was supported by the National Children’s Research Centre, Dublin (SHIELD CF) and grants from the Medical Research Council and Cystic Fibrosis Foundation Therapeutics.