86 resultados para Immunologic Deficiency Syndromes


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnosis of patients with myelodysplastic syndromes (MDS) is largely dependent on morphologic examination of bone marrow aspirates. Several criteria that form the basis of the classifications and scoring systems most commonly used in clinical practice are affected by operator-dependent variation. To identify standardized molecular markers that would allow prediction of prognosis, we have used gene expression profiling (GEP) data on CD34+ cells from patients with MDS to determine the relationship between gene expression levels and prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors sought to determine whether the clinical manifestations of schizophrenia and other psychotic disorders are correlated in affected sibling pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sought to determine whether 80-lead body surface potential mapping (BSPM) would improve detection of acute myocardial infarction (AMI) and occluded culprit artery in patients presenting with ST-segment depression (STD) only on 12-lead ECG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operant learning theory account of behaviors of clinical significance in people with intellectual disability (ID) has dominated the field for nearly 50 years. However, in the last two decades, there has been a substantial increase in published research that describes the behavioral phenotypes of genetic disorders and shows that behaviors such as self-injury and aggression are more common in some syndromes than might be expected given group characteristics. These cross-syndrome differences in prevalence warrant explanation, not least because this observation challenges an exclusively operant learning theory account. To explore this possible conflict between theoretical account and empirical observation, we describe the genetic cause and physical, social, cognitive and behavioral phenotypes of four disorders associated with ID (Angleman, Cornelia de Lange, Prader-Willi and Smith-Magenis syndromes) and focus on the behaviors of clinical significance in each syndrome. For each syndrome we then describe a model of the interactions between physical characteristics, cognitive and motivational endophenotypes and environmental factors (including operant reinforcement) to account for the resultant behavioral phenotype. In each syndrome it is possible to identify pathways from gene to physical phenotype to cognitive or motivational endophenotype to behavior to environment and back to behavior. We identify the implications of these models for responsive and early intervention and the challenges for research in this area. We identify a pressing need for meaningful dialog between different disciplines to construct better informed models that can incorporate all relevant and robust empirical evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavioural phenotypes of Prader-Willi (PWS) and Fragile-X (FraX) syndromes both comprise repetitive behaviours with differences between the profiles. In this study we investigated the context and antecedents to the repetitive behaviours and the association with other behavioural phenotypic characteristics in order to generate testable hypotheses regarding the cause of the behaviours.

The parents or carers of 46 children with PWS (mean age 14.1 years; 20 girls), and 33 boys with FraX (mean age 13.11 years) were interviewed about their children's repetitive behaviour in a semi-structured format.

Children showed negative emotional behaviour (PWS: 87.0%; FraX: 79.4%) and repetitive questions (PWS: 78.3%; FraX: 73.5%) following changes in routine or expectations. Significantly more temper outbursts were reported to follow changes in children with PWS (89.1%) compared with boys with FraX (41.2%) (chi(2) = 20.93; P <0.001). Anxiety that was frequently associated with repetitive and self-injurious behaviours in boys with FraX, followed changes in significantly more boys with FraX (76.5%) compared with children with PWS (6.5%) (chi(2) = 43.19, P <0.001).

On the basis of these reports and existing literature, we hypothesise that decreases in predictability are aversive to children with PWS and FraX. We also hypothesise that these children have a propensity to show a syndrome-related pattern of behaviour (temper outbursts in PWS and displays of anxiety in FraX) when an event in the environment has this aversive property. We hypothesise that questions may be reinforcing to children in their own right by increasing the predictability of the environment. We outline how a specific cognitive deficit in the endophenotypes associated with both PWS and FraX could be investigated as a potential explanation for the hypothesised aversive properties of decreased predictability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear.

Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole.

Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo.

Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown. 

Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (GxE interaction) was identified. 

Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4 degrees C. 

Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this GxE interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.