68 resultados para Immunoglobulin-a


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Analysis of IgH rearrangements in B-cell malignancies has provided clinical researchers with a wide range of information during the last few years. However, only a few studies have contributed to the characterization of these features in multiple myeloma (MM), and they have been focused on the analysis of the expressed IgH allele only. Comparison between the expressed and the non-functional IgH alleles allows further characterizion of the selection processes to which pre-myeloma cells are submitted. DESIGN AND METHODS: We analyzed a cohort of 84 untreated MM patients in order to characterize their functional VDJH and non-functional DJH rearrangements. The pattern of mutations and gene segment usage for both types of rearrangements was analyzed by polymerase chain reaction and sequencing. RESULTS: VH3 and VH1 family members were over- and under-represented, respectively. VH3-30 and VH3-15 segments were the most frequently used, whereas VH4-34 was found only in non-functional or heavily mutated VDJH rearrangements. DH2 and DH3 family members were over-represented in both VDJH and DJH repertoires, while the DH1 family was under-represented only in the productive VDJH rearrangements. Finally, DH3-22 and DH2-21 gene segments were found to be over-represented in the functional repertoire while segments commonly used by less mature B-cell malignancies, such as DH6-19 or DH3-3, were under-represented. INTERPRETATION AND CONCLUSIONS: Data reported here help to identify the clonogenic MM cell as a post-germinal center B cell that has undergone selection processes during the germinal center reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Our purpose in this report was to define genes and pathways dysregulated as a consequence of the t(4;14) in myeloma, and to gain insight into the downstream functional effects that may explain the different prognosis of this subgroup.Experimental Design: Fibroblast growth factor receptor 3 (FGFR3) overexpression, the presence of immunoglobulin heavy chain-multiple myeloma SET domain (IgH-MMSET) fusion products and the identification of t(4;14) breakpoints were determined in a series of myeloma cases. Differentially expressed genes were identified between cases with (n = 55) and without (n = 24) a t(4;14) by using global gene expression analysis.Results: Cases with a t(4;14) have a distinct expression pattern compared with other cases of myeloma. A total of 127 genes were identified as being differentially expressed including MMSET and cyclin D2, which have been previously reported as being associated with this translocation. Other important functional classes of genes include cell signaling, apoptosis and related genes, oncogenes, chromatin structure, and DNA repair genes. Interestingly, 25% of myeloma cases lacking evidence of this translocation had up-regulation of the MMSET transcript to the same level as cases with a translocation.Conclusions: t(4;14) cases form a distinct subgroup of myeloma cases with a unique gene signature that may account for their poor prognosis. A number of non-t(4;14) cases also express MMSET consistent with this gene playing a role in myeloma pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukemic B-chronic lymphoproliferative disorders (B-CLPDs) are generally believed to derive from a monoclonal B cell; biclonality has only occasionally been reported. In this study, we have explored the incidence of B-CLPD cases with 2 or more B-cell clones and established both the phenotypic differences between the coexisting clones and the clinicobiologic features of these patients. In total, 53 B-CLPD cases with 2 or more B-cell clones were studied. Presence of 2 or more B-cell clones was suspected by immunophenotype and confirmed by molecular/genetic techniques in leukemic samples (n = 42) and purified B-cell subpopulations (n = 10). Overall, 4.8% of 477 consecutive B-CLPDs had 2 or more B-cell clones, their incidence being especially higher among hairy cell leukemia (3 of 13), large cell lymphoma (2 of 10), and atypical chronic lymphocytic leukemia (CLL) (4 of 29). In most cases the 2 B-cell subsets displayed either different surface immunoglobulin (sIg) light chain (n = 37 of 53) or different levels of the same sIg (n = 9 of 53), usually associated with other phenotypic differences. Compared with monoclonal cases, B-CLL patients with 2 or more clones had lower white blood cell (WBC) and lymphocyte counts, more frequently displayed splenomegaly, and required early treatment. Among these, the cases in which a CLL clone coexisted with a non-CLL clone were older and more often displayed B symptoms, a monoclonal component, and diffuse infiltration of bone marrow and required early treatment more frequently than cases with monoclonal CLL or 2 CLL clones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DH-JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypervariable regions of immunoglobulin heavy-chain (IgH) rearrangements provide a specific tumor marker in multiple myeloma (MM). Recently, real-time PCR assays have been developed in order to quantify the number of tumor cells after treatment. However, these strategies are hampered by the presence of somatic hypermutation (SH) in VDJH rearrangements from multiple myeloma (MM) patients, which causes mismatches between primers and/or probes and the target, leading to a nonaccurate quantification of tumor cells. Our group has recently described a 60% incidence of incomplete DJH rearrangements in MM patients, with no or very low rates of SH. In this study, we compare the efficiency of a real-time PCR approach for the analysis of both complete and incomplete IgH rearrangements in eight MM patients using only three JH consensus probes. We were able to design an allele-specific oligonucleotide for both the complete and incomplete rearrangement in all patients. DJH rearrangements fulfilled the criteria of effectiveness for real-time PCR in all samples (ie no unspecific amplification, detection of less than 10 tumor cells within 10(5) polyclonal background and correlation coefficients of standard curves higher than 0.98). By contrast, only three out of eight VDJH rearrangements fulfilled these criteria. Further analyses showed that the remaining five VDJH rearrangements carried three or more somatic mutations in the probe and primer sites, leading to a dramatic decrease in the melting temperature. These results support the use of incomplete DJH rearrangements instead of complete somatically mutated VDJH rearrangements for investigation of minimal residual disease in multiple myeloma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contaminating tumour cells in apheresis products have proved to influence the outcome of patients with multiple myeloma (MM) undergoing autologous stem cell transplantation (APBSCT). The gene scanning of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) is a reproducible and easy to perform technique that can be optimised for clinical laboratories. We used it to analyse the aphereses of 27 MM patients undergoing APBSCT with clonally detectable VDJH segments, and 14 of them yielded monoclonal peaks in at least one apheresis product. The presence of positive results was not related to any pre-transplant characteristics, except the age at diagnosis (lower in patients with negative products, P = 0.04). Moreover, a better pre-transplant response trended to associate with a negative result (P = 0.069). Patients with clonally free products were more likely to obtain a better response to transplant (complete remission, 54% vs 28%; >90% reduction in the M-component, 93% vs 43% P = 0.028). In addition, patients transplanted with polyclonal products had longer progression-free survival, (39 vs 19 months, P = 0.037) and overall survival (81% vs 28% at 5 years, P = 0.045) than those transplanted with monoclonal apheresis. In summary, the gene scanning of apheresis products is a useful and clinically relevant technique in MM transplanted patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, we report on the use of the heteroduplex PCR technique to detect the presence of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) in the apheresis products of patients with multiple myeloma (MM) undergoing autologous peripheral blood stem cell (APBSC) transplantation. Twenty-three out of 31 MM patients undergoing APBSC transplantation with VDJH segments clonally rearranged detected at diagnosis were included in the study. Samples of the apheresis products were PCR amplified using JH and VH (FRIII and FRII) consensus primers and subsequently analyzed with the heteroduplex technique, and compared with those obtained at diagnosis. 52% of cases yielded positive results (presence of clonally rearranged VDJH segments in at least one apheresis). The presence of positive results in the apheresis products was not related to any pretransplant characteristics with the exception of response status at transplant. Thus, while no one patient with positive apheresis products was in complete remission (CR), negative immunofixation, before the transplant, five cases (46%) with negative apheresis were already in CR at transplant (P = 0.01). The remaining six cases with heteroduplex PCR negative apheresis were in partial remission before transplant. Patients with clonally free products were more likely to obtain CR following transplant (64% vs 17%, P= 0.02) and a longer progression-free survival, (40 months in patients transplanted with polyclonal products vs 20 with monoclonal ones, P = 0.03). These results were consistent when the overall survival was considered, since it was better in those patients with negative apheresis than it was in those with positive (83% vs 36% at 5 years from diagnosis, P= 0.01). These findings indicate that the presence of clonality rearranged VDJH segments is related to the response and outcome in MM transplanted patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: The main difficulty of PCR-based clonality studies for B-cell lymphoproliferative disorders (B-LPD) is discrimination between monoclonal and polyclonal PCR products, especially when there is a high background of polyclonal B cells in the tumor sample. Actually, PCR-based methods for clonality assessment require additional analysis of the PCR products in order to discern between monoclonal and polyclonal samples. Heteroduplex analysis represents an attractive approach since it is easy to perform and avoids the use of radioactive substrates or expensive equipment. DESIGN AND METHODS: We studied the sensitivity and specificity of heteroduplex PCR analysis for monoclonal detection in samples from 90 B-cell non Hodgkin's lymphoma (B-NHL) patients and in 28 individuals without neoplastic B-cell disorders (negative controls). Furthermore, in 42 B-NHL and in the same 28 negative controls, we compared heteroduplex analysis vs the classical PCR technique. We also compared ethidium bromide (EtBr) vs. silver nitrate (AgNO(3)) staining as well as agarose vs. polyacrylamide gel electrophoresis (PAGE). RESULTS: Using two pair consensus primers sited at VH (FR3 and FR2) and at JH, 91% of B-NHL samples displayed monoclonal products after heteroduplex PCR analysis using PAGE and AgNO(3) staining. Moreover, no polyclonal sample showed a monoclonal PCR product. By contrast, false positive results were obtained when using agarose (5/28) and PAGE without heteroduplex analysis: 2/28 and 8/28 with EtBr and AgNO(3) staining, respectively. In addition, false negative results only appeared with EtBr staining: 13/42 in agarose, 4/42 in PAGE without heteroduplex analysis and 7/42 in PAGE after heteroduplex analysis. INTERPRETATION AND CONCLUSIONS: We conclude that AgNO(3) stained PAGE after heteroduplex analysis is the most suitable strategy for detecting monoclonal rearrangements in B-NHL samples because it does not produce false-positive results and the risk of false-negative results is very low.