93 resultados para Harmful cyanobacteria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability and it has been studied for decades, but most of them have focused on concrete without cracking or not subjected to any structural load. In fact, concrete structures are subjected to various types of loads, which lead to cracking when the tensile stress in concrete exceeds its tensile strength. Cracking could increase transport properties of concrete and accelerate the ingress of harmful substances (Cl -, O2, H2 O, CO2). This could initiate and accelerate different types of deterioration processes in concrete, including corrosion of steel reinforcement. The expansive products generated by the deterioration processes themselves can initiate cracking. The success of concrete patch repairs can also influence microcracking at the interface as well as the patch repair itself. Therefore, monitoring the development of microcracking in reinforced concrete members is extremely useful to assess the defects and deterioration in concrete structures. In this paper, concrete beams made using 4 different mixes were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce a crack with width of 0.1mmon the tension surface of beams - F 0.1) and weekly cycles of wetting (1 day)/drying (6 days) with chloride solution. The development of microcracking on the surface of concrete was monitored using the Autoclam Permeability System at every two weeks for 60 weeks. The ultrasonic pulse velocity of the concrete was also measured along the beam by using the indirect method during the test period. The results indicated that the Autoclam Permeability System was able to detect the development of microcracks caused by both sustained loading and chloride induced corrosion of steel in concrete. However, this was not the case with the ultrasonic method used in the work (indirect method applied along the beam); it was sensitive to microcracking caused by sustained loading but not due to corrosion. © 2014 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Falls are a significant threat to the safety, health and independence of older citizens. Despite the substantial evidence that is available around effective falls prevention programmes and interventions, their translation into falls reduction programmes and policies has yet to be fully realised. While hip fracture rates are decreasing, the number and incidence of fall-related hospital admissions among older people continue to rise. Given the demographic trends that highlight increasing numbers of older people in the UK, which is broadly reflected internationally, there is a financial and social imperative to minimise the rate of falls and associated injuries. Falling is closely aligned to growing older (Slips, Trips and Falls Update: From Acute and Community Hospitals and Mental Health Units in England and Wales, Department of Health, HMSO, London, 2010). According to the World Health Organization, around 30% of older people aged over 65 and 50% of those over 80 will fall each year (Falls Fact Sheet Number 344, WHO, Geneva, 2010). Falls happen as a result of many reasons and can have harmful consequences, including loss of mobility and independence, confidence and in many cases even death (Cochrane Database Syst Rev 15, 2009, 146; Slips, Trips and Falls Update: From Acute and Community Hospitals and Mental Health Units in England and Wales, Department of Health, HMSO, London, 2010; Falling Standards, Broken Promises: Report of the National
Audit of Falls and Bone Health in Older People 2010, Health Care Quality
Improvement Partnership, London, 2011). What is neither fair nor correct is the
common belief by old and young alike that falls are just another inconvenience to put up with. The available evidence justifiably supports the view that well-organised services, based upon national standards and expert guidance, can prevent future falls among older people and reduce death and disability from fractures. This paper will draw from the UK, as an exemplar for policy and practice, to discuss the strategic direction of falls prevention programmes for older people and the partnerships that need to exist between researchers, service providers and users of services to translate evidence to the clinical setting. Second, it will propose some mechanisms for disseminating evidence to healthcare professionals and other stakeholders, to improve the quality and capacity of the clinical workforce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,

&lt;img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif"&gt;PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP; bis(trifluoromethylsulfonyl)imide, TFSI) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a significant increase in the occurrence of cyanobacterial blooms in freshwaters over the past few decades due to escalating nutrient levels. These cyanobacteria release a range of toxins, for example microcystins which are chemically very stable. Many cyanotoxins are consequently very difficult to remove from water using existing treatment technologies. Semiconductor photocatalysis, however, has proven to be a very effective process for the removal of these compounds from water. In this chapter we consider the application of this highly versatile and exciting technology for the decomposition of cyanotoxins. Furthermore design concepts for solar photocatalytic reactors that could be utilized for the removal of these toxins are also considered

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor photocatalysis has been applied to the remediation of an extensive range of chemical pollutants in water over the past 30 years. The application of this versatile technology for removal of micro-organisms and cyanotoxins has recently become an area that has also been the subject of extensive research particularly over the past decade. This paper considers recent research in the application of semiconductor photocatalysis for the treatment of water contaminated with pathogenic micro-organisms and cyanotoxins. The basic processes involved in photocatalysis are described and examples of recent research into the use of photocatalysis for the removal of a range of microorganisms are detailed. The paper concludes with a review of the key research on the application of this process for the removal of chemical metabolites generated from cyanobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously reported the effectiveness of TiO2 photocatalysis in the destruction of species generated by cyanobacteria, specifically geosmin and microcystin-LR. In this paper we report an investigation of factors which influence the rate of the toxin destruction at the catalyst surface. A primary kinetic solvent isotope effect of approximately 1.5 was observed when the destruction was performed in a heavy water solvent. This is in contrast to previous reports of a solvent isotope effect of approximately 3, however, these studies were undertaken with a different photocatalyst material. The solvent isotope effect therefore appears to be dependent on the photocatalyst material used. The results of the study support the theory that the photocatalytic decomposition occurs on the catalyst surface rather than in the bulk of the solution. Furthermore it appears that the rate determining step is not oxygen reduction as previously reported. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins are one of the primary hepatotoxic cyanotoxins released from cyanobacteria. The presence of these compounds in water has resulted in the death of both humans and domestic and wild animals. Although microcystins are chemically stable titanium dioxide photocatalysis has proven to be an effective process for the removal of these compounds in water. One problem with this process is that it requires UV light and therefore in order to develop effective commercial reactor units that could be powered by solar light it is necessary to utilize a photocatalyst that is active with visible light. In this paper we report on the application of four visible light absorbing photocatalysts for the destruction of microcystin-LR in water. The rhodium doped material proved to be the most effective material followed by a carbon-modified titania. The commercially available materials were both relatively poor photocatalysts under visible radiation while the platinum doped catalyst also displayed a limited activity for toxin destruction. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins (cyclic heptapeptides) produced by a number of freshwater cyanobacteria are a potential cause for concern in potable water supplies due to their acute and chronic toxicity. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. It is, however, necessary to have a sufficient knowledge of how the catalyst materials cause the degradation of the toxins through the photocatalytic process. The present study reports microcystin degradation products of the photocatalytic oxidation by using a number of commercial TiO2 powder (P25, PC50, PC500 and UV100) and granular (KO1, KO3, TiCat-C, TiCat-S) materials, so aiding the mechanistic understanding of this process. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin for all the catalysts tested followed almost the same pathway, indicating the physical properties of the catalysts had little effects on the degradation pathway of microcystin-LR. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geosmin is produced by cyanobacteria and actinomycetes in surface waters. It causes undesirable earthy off-flavours in freshwater fish and is a major concern for the drinking water industry. This paper presents the first published study on the use of the novel pelleted Ti02 photocatalyst, Hombikat K01/C, for the removal of geosmin from water. Ti02 in pelleted form eliminates the requirement for the separation of the catalyst from the water following treatment which is normally the case with the widely used powdered catalysts. A laboratory reactor was designed to limit system loss since the compound adsorbs to a wide range of surfaces. Initial concentration, aeration rate and irradiation were evaluated. It was found that degradation of geosmin followed the Langmuir-Hinshelwood model. Elevated aeration had no effect on the photocatalytic removal of geosmin, but increasing irradiation was found to increase degradation rates. The catalyst proved effective within 10 min under optimum conditions. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofilm growth on stone surfaces is a significant contributing factor to stone biodeterioration. Current market based biocides are hazardous to the environment and to public health. We have investigated the photo-dynamic effect of methylene blue (MB) in the presence of hydrogen peroxide (H2O2) on the destruction of the cyanobacterium Synechococcus leopoliensis (S. leopoliensis) under irradiation with visible light. Data presented in this paper illustrate that illumination of S. leopoliensis in the presence of a photosensitiser (MB) and H2O2 results in the decomposition of both the cyanobacterium and the photosensitiser. The presence of MB and H2O2 affects the viability of the photosensitiser and the cyanobacterium with the fluorescence of both decreasing by 80% over the irradiation time investigated. The photo-dynamic effect was observed under aerobic and anaerobic conditions indicating that oxygen was not necessary for the process. This novel combination could be effective for the remediation of biofilm colonised stone surfaces

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) photocatalysis has been used to initiate the destruction of nodularin, a natural hepatotoxin produced by cyanobacteria. The destruction process was monitored using liquid chromatography-mass spectrometry analysis which has also enabled the identification of a number of the photocatalytic decomposition products. The reduction in toxicity following photocatalytic treatment was evaluated using protein phosphatase inhibition assay, which demonstrated that the destruction of nodularin was paralleled by an elimination of toxicity. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geosmin (GSM) and 2-methylisoborneol (MIB) are semi-volatile compounds produced by cyanobacteria in surface waters. These compounds present problems to the drinking water industry and in aquaculture because they can taint water and fish producing an earthy-musty flavour. This paper presents an initial study on the use of TiO2 photocatalysis for the destruction of these compounds in water. The process proved effective with the complete destruction of MIB and GSM being achieved within 60 min. These results suggest that TiO2 photocatalysis will be a successful method for removal of taint compounds from potable water supplies and fish farms. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins (cyclic heptapeptides) are produced by a number of freshwater cyanobacteria and cause concern in potable water supplies due to their acute and chronic toxicity. The present study reports the structural characterization of the degradation products of the photocatalytic oxidation of microcystin-LR, so aiding the mechanistic understanding of this process. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. However, before it can be adopted in any practical application it is necessary to have a sufficient knowledge of degradation byproducts and their potential toxicity. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin appears to be initiated via three mechanisms: UV irradiation, hydroxyl radical attack, and oxidation. UV irradiation caused geometrical isomerization of microcystin converting the (4E), (6E) of the Adda configuration to (4E), 6(Z) or 4(Z), 6(E). Hydroxyl radical attack on the conjugated diene structure of Adda moiety produced dihyroxylated products. Further oxidation cleaved the hydroxylated 4-5 and/or 6-7 bond of Adda to form aldehyde or ketone peptide residues, which then were oxidized into the corresponding carboxylic acids. Photocatalysis also hydrolyzed the peptide bond on the ring structure of microcystin to form linear structures although this appeared to be a minor pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins are a family of hepatotoxic peptides produced by freshwater cyanobacteria. Their occurrence in drinking water is of concern since chronic exposure to these toxins causes tumor promotion. It is therefore essential to establish a reliable treatment strategy that will ensure their removal from potable water. We have previously described the rapid destruction of microcystin-LR using TiO2 photocatalysis, however, since there are at least 70 microcystin variants it is essential that the destruction of a number of microcystins be evaluated. In this study the dark adsorption and destruction of four microcystins was followed over a range of pH. All four microcystins were destroyed although the efficiency of their removal varied. The two more hydrophobic microcystins (-LW and -LF) were found to have high dark adsorption (98 and 91% at pH 4) in contrast to microcystin-RR, which was found to have almost no (only 2-3%) dark adsorption across all pH.