96 resultados para HYPOXIA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. Diabetic patients who also have retinitis pigmentosa (RP) appear to have fewer and less severe retinal microvascular lesions. Diabetic retinopathy may be linked to increased inner retinal hypoxia, with the possibility that this is exacerbated by oxygen usage during the dark-adaptation response. Therefore, patients with RP with depleted rod photoreceptors may encounter proportionately less retinal hypoxia, and, when diabetes is also present, there may be fewer retinopathic lesions. This hypothesis was tested in rhodopsin knockout mice (Rho(-/-)) as an RP model in which the diabetic milieu is superimposed. The study was designed to investigate whether degeneration of the outer retina has any impact on hypoxia, to examine diabetes-related retinal gene expression responses, and to assess lesions of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal ischaemic disorders such as diabetic retinopathy and retinal vein occlusion are common. The hypoxia-related stimuli from oxygen-deprived neural and glial networks can drive expression of growth factors and cytokines which induce leakage from the surviving vasculature and/or pre-retinal and papillary neovascularisation. If left untreated, retinal vascular stasis, hypoxia or ischaemia can lead to macular oedema or fibro-vascular scar formation which are associated with severe visual impairment, and even blindness. Current therapies for ischaemic retinopathies include laser photocoagulation, injection of corticosteroids or VEGF-antibodies and vitreoretinal surgery, however they carry significant side effects. As an alternative approach, we propose that if reparative intra-retinal angiogenesis can be harnessed at the appropriate stage, ischaemia could be contained or reversed. This review provides evidence that reperfusion of ischaemic retina and suppression of sight-threatening sequelae is possible in both experimental and clinical settings. In particular, there is emphasis on the clinical potential for endothelial progenitor cells (EPCs) to promote vascular repair and reversal of ischaemic injury in various tissues including retina. Gathering evidence from an extensive published literature, we outline the molecular and phenotypic nature of EPCs, how they are altered in disease and provide a rationale for harnessing the vascular reparative properties of various cell sub-types. When some of the remaining questions surrounding the clinical use of EPCs are addressed, they may provide an exciting new therapeutic option for treating ischaemic retinopathies. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart activity of Pecten maximus (L.) has been recorded during various forms of experimentally induced respiratory stress. There was considerable variation in the responses of individual scallops but bradycardia generally occurred in response to all forms of respiratory stress, with the rate of fall in heart rate dependent upon the severity of hypoxia. When oxygen tension declined slowly in a closed respirometer there was regulation of both heart rate and oxygen consumption. The critical tension, Pc, for oxygen consumption lay between 70 and 80 mm Hg, and corresponded with a slight regulatory upswing of the heart rate, whereas the Pc for heart rate was much lower at 20–30 mm Hg. Sudden transfer to deoxygenated water for 3 h resulted in very rapid bradycardia and there was a rapid recovery and initial overshoot of the normal rate on return to well-oxygenated sea water. Aerial exposure for 3 h produced more gradual bradycardia followed by gradual recovery on return to sea water. The results of this work are compared in some detail with previous work on other species of bivalve from different geographical areas and habitats, and the mechanisms controlling cardiac and respiratory regulation are discussed. It is concluded that there are few clear-cut general differences between littoral and sublittoral species in their behavioural and physiological adaptations to hypoxia; the main distinguishing feature of littoral-adapted species is their ability to control air-gaping. Changes in heart activity generally indicate variations in metabolic rate, the speed at which the metabolic rate may be altered reflecting the degree of adaptation to the littoral environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptionally erythropoietin (Epo) synthesis is tightly regulated by the hypoxia inducible factor (HIF), which is composed of one alpha and one beta subunit that are constitutively expressed. The beta subunit is non-variable, but three different alpha subunits give rise to three isoforms of HIF. The alpha subunit is proteasomally regulated in the presence of oxygen by hydroxylation of the proline in the LXXLAP motif of the oxygen dependent degradation (ODD) domain of HIFalpha, catalysed by members of the prolyl hydroxylase domain (PHD) family of enzymes. This allows the von Hippel Lindau (VHL) protein to associate with the alpha subunit, which is subsequently tagged with ubiquitin and degraded by the proteasome. Any defect in the oxygen sensing pathway that allows the alpha subunit to escape proteasomal regulation leads to elevated expression of HIF target genes.

Recently mutations in both VHL and PHD2 have been identified in a cohort of patients with erythrocytosis, but no mutations were found in the ODD domain of HIF1alpha. Instead, investigation of the homologous region in HIF-2alpha revealed four different mutations, Pro534Leu, Met535Val, Gly537Arg and Gly537Trp in seven individuals/families. Affected individuals presented at a young age with elevated serum Epo. Several individuals have a clinical history of thrombosis, but no evidence of a von Hippel Lindau-like syndrome.

To define how the four mutations relate to the erythrocytosis phenotype functional assays were performed in vitro. Binding of PHD2 to the four HIF-2alpha mutants was impaired to varying degrees, with both the Gly537 mutants showing the greatest reduction. The association of VHL with the hydroxylated Met535Val mutant peptide was similar to wild type HIF- 2alpha, but was decreased in the other three HIF-2alpha mutants. Expression of three HIF- 2alpha target genes, adrenomedullin, NDRG1 and VEGF, was significantly up-regulated in cells stably transfected with the mutants under normoxia compared to wild type HIF-2alpha. Mutations in the ODD domain of HIF-2alpha disrupt proteasomal regulation by reducing the association with PHD2 and hence hydroxylation. Furthermore the binding of VHL is also impaired, even when HIF-2alpha is hydroxylated. Examination of the three-dimensional structure of hydroxylated HIF-1alpha bound to VHL confirms that amino acids close to site of hydroxylation (Pro-531 in isoform 2) are important for this association. These observations, together with recent studies utilising murine models of erythrocytosis, support the PHD2-HIF-2alpha-VHL axis as the major regulator of erythropoietin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.

Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.

Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.

Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.

Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.

Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.

Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina.

Methods: Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA.

Results: In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels.

Conclusions: In hyperoxia, reduced BH bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia. © 2012 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinopathy is a major complication of diabetes mellitus and this condition remains a leading cause of blindness in the working population of developed countries. As diabetic retinopathy progresses a range of neuroglial and microvascular abnormalities develop although it remains unclear how these pathologies relate to each other and their net contribution to retinal damage. From a haemodynamic perspective, evidence suggests that there is an early reduction in retinal perfusion before the onset of diabetic retinopathy followed by a gradual increase in blood flow as the complication progresses. The functional reduction in retinal blood flow observed during early diabetic retinopathy may be additive or synergistic to pro-inflammatory changes, leucostasis and vaso-occlusion and thus be intimately linked to the progressive ischaemic hypoxia and increased blood flow associated with later stages of the disease. In the current review a unifying framework is presented that explains how arteriolar dysfunction and haemodynamic changes may contribute to late stage microvascular pathology and vision loss in human diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT BACKGROUND: Acute exposure to high-altitude stimulates free radical formation in lowlanders yet whether this persists during chronic exposure in healthy well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress [ascorbate radical (A•-), electron paramagnetic resonance spectroscopy and nitrite (NO2-), ozone-based chemiluminescence] was assessed in venous blood of 25 male highlanders living at 3,600 m with (n = 13, CMS+) and without (n = 12, CMS-) CMS. Twelve age and activity-matched healthy male lowlanders were examined at sea-level and during acute hypoxia. We also measured flow-mediated dilatation (FMD), arterial stiffness (AIx-75) and carotid intima-media thickness (IMT). RESULTS: Compared to normoxic lowlanders, oxidative-nitrosative stress was moderately increased in CMS- (P < 0.05) as indicated by elevated A•- (3,191 ± 457 vs. 2,640 ± 445 arbitrary units (AU)] and lower NO2- (206 ± 55 vs. 420 ± 128 nmol/L) whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS+ (A•-: 3,765 ± 429 AU and NO2- : 148 ± 50 nmol/L) compared to both CMS- and lowlanders (P < 0.05). This was associated with systemic vascular dysfunction as indicated by lower (P < 0.05 vs. CMS-) FMD (4.2 ± 0.7 vs. 7.6 ± 1.7 %) and increased AIx-75 (23 ± 8 vs. 12 ± 7 %) and carotid IMT (714 ± 127 vs. 588 ± 94 µM). CONCLUSIONS: Healthy highlanders display a moderate sustained elevation in oxidative-nitrosative stress that unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.Clinical Trials Gov Registration # NCT011827921Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, Wales, UK;2Sondes Moléculaires en Biologie et Stress Oxydant, Institut de Chimie Radicalaire, CNRS UMR 7273, Aix-Marseille University, France;3Department of Cardiology, University Hospital of Bern, Bern, Switzerland;4Institute of Clinical Physiology, CNR, Pisa, Italy;5Instituto Bolivano de Biologia de Altura, La Paz, Bolivia;6Centre for Clinical and Population Sciences, Queen's University Belfast, Belfast, Northern Ireland,7Botnar Center for Clinical Research, Hirslanden Group, Lausanne, Switzerland;8Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile and9Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland*Drs Bailey, Rimoldi, Scherrer and Sartori contributed equally to this workCorrespondence: Damian Miles Bailey, Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, UK CF37 4AT email: dbailey1@glam.ac.uk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoietin (Epo), a glycoprotein hormone produced principally in the fetal kidney and in the adult liver in response to hypoxia, is the prime regulator of growth and differentiation in erythroid progenitor cells. The regulation of Epo gene expression is not fully understood, but two mechanisms have been proposed. One involves the participation of a heme protein capable of reversible oxygenation and the other depends on the intracellular concentration of reactive oxygen species (ROS), assumed to be a function of pO2. We have investigated the production of Epo in response to three stimuli, hypoxia, cobalt chloride, and the iron chelator desferrioxamine, in Hep3B cells. As expected, hypoxia caused a marked rise in Epo production. When the cells were exposed to the paired stimuli of hypoxia and cobalt no further increase was found. In contrast, chelation of iron under hypoxic conditions markedly enhanced Epo production, suggesting that the two stimuli act by separate pathways. The addition of carbon monoxide inhibited hypoxia-induced Epo production, independent of desferrioxamine concentration. Taken together these data support the concept that pO2 and ROS are sensed independently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of erythropoietin (Epo), the glycoprotein hormone which controls red blood cell formation, is regulated by feedback mechanisms sensing tissue oxygenation. The mechanism of the putative oxygen sensor has yet to be elucidated. There is evidence that at least two pathways participate in hypoxia signal transduction. One appears to involve a specific haem protein, and a second implicates reactive oxygen species (ROS). Iron catalyses the generation of intracellular ROS and therefore alters the cellular redox state. We have investigated the effect of modulating intracellular iron content on Epo production in Hep 3B cells. Iron chelation stimulates Epo production at 20% O2 and enhances Epo production at 1% O2, but it has no additive effect on cobalt-induced Epo production. Excess molar iron inhibited Epo production in response to hypoxia, desferrioxamine (DFO) and cobalt chloride and inhibited the DFO-enhancing effect of hypoxia-induced Epo production. We found that sulphydryl oxidising agents exert a differential inhibitory effect on hypoxia-induced versus DFO-induced Epo production, providing further evidence that multiple pathways of oxygen sensing exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoietin (EPO) is the main humoral stimulus of erythropoiesis. In adult mammals, the kidney releases EPO in response to hypoxic stress. Conflicting data have suggested either renal tubular or peritubular cell origins of EPO synthesis in vivo. In situ hybridization studies were performed to define further the kidney cell type(s) capable of increasing EPO gene expression during hypoxic stimulation. EPO gene expression was stimulated in mice exposed to acute hypobaric hypoxia. Kidneys from hypoxic and control normoxic mice were obtained. Six digoxigenin-labelled oligonucleotide probes complementary to EPO exon sequences were utilized for in situ hybridization for EPO messenger RNA. Positive hybridization signals were identified in some proximal tubular cells, confined to the inner third of the renal cortex of hypoxic mouse kidney.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischemia-reperfusion (I/R) injury causes skeletal muscle infarction and ischemic preconditioning (IPC) augments ischemic tolerance in animal models. To date, this has not been demonstrated in human skeletal muscle. This study aimed to develop an in vitro model to investigate the efficacy of simulated IPC in human skeletal muscle. Human skeletal muscle strips were equilibrated in oxygenated Krebs-Henseleit-HEPES buffer (37 degrees C). Aerobic and reperfusion phases were simulated by normoxic incubation and reoxygenation, respectively. Ischemia was simulated by hypoxic incubation. Energy store, cell viability, and cellular injury were assessed using ATP, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays, respectively. Morphological integrity was assessed using electron microscopy. Studies were designed to test stability of the preparation (n = 5-11) under normoxic incubation over 24 h; the effect of 1, 2, 3, 4, or 6 h hypoxia followed by 2 h of reoxygenation; and the protective effect of hypoxic preconditioning (HPC; 5 min of hypoxia/5 min of reoxygenation) before 3 h of hypoxia/2 h of reoxygenation. Over 24 h of normoxic incubation, muscle strips remained physiologically intact as assessed by MTT, ATP, and LDH assays. After 3 h of hypoxia/2 h of reoxygenation, MTT reduction levels declined to 50.1 +/- 5.5% (P <0.05). MTT reduction levels in HPC (82.3 +/- 10.8%) and normoxic control (81.3 +/- 10.2%) groups were similar and higher (P <0.05) than the 3 h of hypoxia/2 h of reoxygenation group (45.2 +/- 5.8%). Ultrastructural morphology was preserved in normoxic and HPC groups but not in the hypoxia/reoxygenation group. This is the first study to characterize a stable in vitro model of human skeletal muscle and to demonstrate a protective effect of HPC in human skeletal muscle against hypoxia/reoxygenation-induced injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital or familial erythrocytosis/polycythemia can have many causes, and an emerging cause is genetic disruption of the oxygen-sensing pathway that regulates the Erythropoietin (EPO) gene. More specifically, recent studies have identified erythrocytosis-associated mutations in the HIF2A gene, which encodes for Hypoxia Inducible Factor-2a (HIF-2a), as well as in two genes that encode for proteins that regulate it, Prolyl Hydroxylase Domain protein 2 (PHD2) and the von Hippel Lindau tumor suppressor protein (VHL). We report here the identification of two new heterozygous HIF2A missense mutations, M535T, and F540L, both associated with erythrocytosis. Met-535 has previously been identified as a residue mutated in other patients with erythrocytosis; although, the mutation of this particular residue to Thr has not been reported. In contrast, Phe-540 has not been reported as a residue mutated in erythrocytosis, and we present evidence here that this mutation impairs interaction of HIF-2a with both VHL and PHD2. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between the biological activity of NO and its chemistry is complex. The objectives of this study were to investigate the influence of oxygen tension on the cytotoxicity of the NO• donor DETA/NO and to determine the effects of oxygen tension on the key RNS (reactive nitrogen species) responsible for any subsequent toxicity. The findings presented in this study indicate that the DETA/NO-mediated cytotoxic effects were enhanced under hypoxic conditions. Further investigations revealed that neither ONOO⁻ (peroxynitrite) nor nitroxyl was generated. Fluorimetric analysis in the presence of scavengers suggest for the first time that another RNS, dinitrogen trioxide may be responsible for the cytotoxicity with DETA/NO. Results showed destabilization of HIF (hypoxia inducible factor)-1α and depletion of GSH levels following the treatment with DETA/NO under hypoxia, which renders cells more susceptible to DETA/NO cytotoxicity, and could account for another mechanism of DETA/NO cytotoxicity under hypoxia. In addition, there was significant accumulation of nuclear p53, which showed that p53 itself might be a target for S-nitrosylation following the treatment with DETA/NO. Both the intrinsic apoptotic pathway and the Fas extrinsic apoptotic pathway were also activated. Finally, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is another important S-nitrosylated protein that may possibly play a key role in DETA/NO-mediated apoptosis and cytotoxicity. Therefore this study elucidates further mechanisms of DETA/NO mediated cytotoxicity with respect to S-nitrosylation that is emerging as a key player in the signalling and detection of DETA/NO-modified proteins in the tumour microenvironment.