102 resultados para HPLC Profiling
Resumo:
Depletion of the nitrofuran antibiotics furazolidone, furaltadone, nitrofurantoin and nitrofurazone and their tissue-bound metabolites AOZ, AMOZ, AHD and SEM from pig muscle, liver and kidney tissues is described. Groups of pigs were given feed medicated with one of the nitrofuran drugs at a therapeutic concentration (400 mg kg(-1)) for ten days. Animals were slaughtered at intervals and tissue samples collected for analysis for six weeks following withdrawal of medicated feed. These samples were analysed both for parent nitrofurans (using LC-MS/MS and HPLC-UV), and for tissue-bound metabolites (using LC-MS/MS). The parent drugs were detectable only sporadically and only in pigs subjected to no withdrawal period whatsoever. This confirms the instability of the four major nitrofuran antibiotics in edible tissues. In contrast, the metabolites accumulated to high concentrations in tissues (ppm levels) and had depletion half lives of between 5.5 and 15.5 days. The metabolites of all four drugs were still readily detectable in tissues six weeks after cessation of treatment. This emphasizes the benefits of monitoring for the stable metabolites of the nitrofurans.
Resumo:
Infection of mammalian skeletal muscle with the intracellular parasite Trichinella spiralis results in profound alterations in the host cell and a realignment of host cell gene expression. The role of parasite excretory/secretory (E/S) products in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional electrophoresis to analyse the profile of muscle larva excreted/secreted proteins and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the interrogation of a custom-made Trichinella EST database and the NemaGene cluster database for T. spiralis. Our results suggest that this proteomic approach is a useful tool to study protein expression in Trichinella spp. and will contribute to the identification of excreted/secreted proteins.
Resumo:
Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.
Resumo:
GIP is a peptide hormone of therapeutic interest in type 2 diabetes and obesity. This study evaluated pGIP/neo STC-1 as a potential K-cell model for studying GIP secretion.
Resumo:
Element profile was investigated for their use to trace the geographical origin of rice (Oryza sativa L.) samples. The concentrations of 13 elements (calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), boron (B), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd)) were determined in the rice samples by inductively coupled plasma optical emission and mass spectrometry. Most of the essential elements for human health in rice were within normal ranges except for Mo and Se. Mo concentrations were twice as high as those in rice from Vietnam and Spain. Meanwhile, Se concentrations were three times lower in the whole province compared to the Chinese average level of 0.088 mg/kg. About 12% of the rice samples failed the Chinese national food safety standard of 0.2 mg/kg for Cd. Combined with the multi-elemental profile in rice, the principal component analysis (PCA), discriminant function analysis (DFA) and Fibonacci index analysis (FIA) were applied to discriminate geographical origins of the samples. Results indicated that the FIA method could achieve a more effective geographical origin classification compared with PCA and DFA, due to its efficiency in making the grouping even when the elemental variability was so high that PCA and DFA showed little discriminatory power. Furthermore, some elements were identified as the most powerful indicators of geographical origin: Ca, Ni, Fe and Cd. This suggests that the newly established methodology of FIA based on the ionome profile can be applied to determine the geographical origin of rice.
Resumo:
Elucidation of the transcriptome and proteome of the normal retina will be difficult since it is comprised of at least 55 different cell types. However the characteristic layered cellular anatomy of the retina makes it amenable to planar sectioning, enabling the generation of enriched retinal cell populations. The aim of this study was to validate a reproducible method for preparing enriched retinal layers from porcine retina.
Resumo:
A procedure was developed to extract polyols and trehalose (protectants against stress) from fungal conidia. Conidia were sonicated (120 s) and immersed in a boiling water bath (5.5 min) to optimize extraction of polyols and trehalose, respectively. A rapid method was developed to separate and detect low-molecular-weight polyols and trehalose using high-performance liquid chromatography (HPLC). An ion exchange column designed for standard carbohydrate analysis was used in preference to one designed for sugar alcohol separation. This resulted in rapid elution (less than 5 min), without sacrificing peak resolution. The use of a pulsed electrochemical detector (gold electrode) resulted in limits of reliable quantification as low as 1.6 μg ml-1 for polyols and 2.8 μg ml-1 for trehalose. This is very sensitive and rapid method by which these protectants can be analysed. It avoids polyol derivatization that characterizes analysis by gas chromatography and the long run times (up to 45 min) that typify HPLC analysis using sugar alcohol columns.
Resumo:
BACKGROUND: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC.
METHODS: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations.
RESULTS: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy.
CONCLUSIONS: High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.
Resumo:
Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.
Resumo:
Vaccination procedures within the cattle industry are important disease control tools to minimize economic and welfare burdens associated with respiratory pathogens. However, new vaccine, antigen and carrier technologies are required to combat emerging viral strains and enhance the efficacy of respiratory vaccines, particularly at the point of pathogen entry. New technologies, specifically metabolomic profiling, could be applied to identify metabolite immune-correlates representative of immune protection following vaccination aiding in the design and screening of vaccine candidates. This study for the first time demonstrates the ability of untargeted UPLC-MS metabolomic profiling to identify metabolite immune correlates characteristic of immune responses following mucosal vaccination in calves. Male Holstein Friesian calves were vaccinated with Pfizer Rispoval® PI3 + RSV intranasal vaccine and metabolomic profiling of post-vaccination plasma revealed 12 metabolites whose peak intensities differed significantly from controls. Plasma levels of glycocholic acid, N-[(3α,5β,12α)-3,12-Dihydroxy-7,24-dioxocholan-24-yl]glycine, uric acid and biliverdin were found to be significantly elevated in vaccinated animals following secondary vaccine administration, whereas hippuric acid significantly decreased. In contrast, significant upregulation of taurodeoxycholic acid and propionylcarnitine levels were confined to primary vaccine administration. Assessment of such metabolite markers may provide greater information on the immune pathways stimulated from vaccine formulations and benchmarking early metabolomic responses to highly immunogenic vaccine formulations could provide a means for rapidly assessing new vaccine formulations. Furthermore, the identification of metabolic systemic immune response markers which relate to specific cell signaling pathways of the immune system could allow for targeted vaccine design to stimulate key pathways which can be assessed at the metabolic level.