69 resultados para Gene-environment interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant activation of Wnt/β-catenin signaling, resulting in the expression of Wnt-regulated oncogenes, is recognized as a critical factor in the etiology of colorectal cancer. Occupancy of β-catenin at promoters of Wnt target genes drives transcription, but the mechanism of β-catenin action remains poorly understood. Here, we show that CARM1 (coactivator-associated arginine methyltransferase 1) interacts with β-catenin and positively modulates β-catenin-mediated gene expression. In colorectal cancer cells with constitutively high Wnt/β-catenin activity, depletion of CARM1 inhibits expression of endogenous Wnt/β-catenin target genes and suppresses clonal survival and anchorage-independent growth. We also identified a colorectal cancer cell line (RKO) with a low basal level of β-catenin, which is dramatically elevated by treatment with Wnt3a. Wnt3a also increased the expression of a subset of endogenous Wnt target genes, and CARM1 was required for the Wnt-induced expression of these target genes and the accompanying dimethylation of arginine 17 of histone H3. Depletion of β-catenin from RKO cells diminished the Wnt-induced occupancy of CARM1 on a Wnt target gene, indicating that CARM1 is recruited to Wnt target genes through its interaction with β-catenin and contributes to transcriptional activation by mediating events (including histone H3 methylation) that are downstream from the actions of β-catenin. Therefore, CARM1 is an important positive modulator of Wnt/β-catenin transcription and neoplastic transformation, and may thereby represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/β-catenin signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential (UNEP 2001). The majority of studies on endocrine disruption have focused on interferences on the sexual steroid hormones and so have overlooked disruption to glucocorticoid hormones. Here the endocrine disrupting potential of individual POPs and their mixtures has been investigated in vitro to identify any disruption to glucocorticoid nuclear receptor transcriptional activity. POP mixtures were screened for glucocorticoid receptor (GR) translocation using a GR redistribution assay (RA) on a CellInsight(TM) NXT High Content Screening (HCS) platform. A mammalian reporter gene assay (RGA) was then used to assess the individual POPs, and their mixtures, for effects on glucocorticoid nuclear receptor transactivation. POP mixtures did not induce GR translocation in the GR RA or produce an agonist response in the GR RGA. However, in the antagonist test, in the presence of cortisol, an individual POP, p,p'-dichlorodiphenyldichloroethylene (DDE), was found to decrease glucocorticoid nuclear receptor transcriptional activity to 72.5% (in comparison to the positive cortisol control). Enhanced nuclear transcriptional activity, in the presence of cortisol, was evident for the two lowest concentrations of perfluorodecanoic acid (PFOS) potassium salt (0.0147mg/ml and 0.0294mg/ml), the two highest concentrations of perfluorodecanoic acid (PFDA) (0.0025mg/ml and 0.005mg/ml) and the highest concentration of 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) (0.0000858mg/ml). It is important to gain a better understanding of how POPs can interact with GRs as the disruption of glucocorticoid action is thought to contribute to complex diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation, and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual Reality techniques are relatively new, having experienced significant development only during the last few years, in accordance with the progress achieved by computer science and hardware and software technologies. The study of such advanced design systems has led to the realization of an immersive environment in which new procedures for the evaluation of product prototypes, ergonomics and manufacturing operations have been simulated. The application of the environment realized to robotics, ergonomics, plant simulations and maintainability verifications has allowed us to highlight the advantages offered by a design methodology: the possibility of working on the industrial product in the first phase of conception; of placing the designer in front of the virtual reproduction of the product in a realistic way; and of interacting with the same concept. The aim of this book is to present an updated vision of VM through different aspects. We will describe the trends and results achieved in the automotive, aerospace and railway fields, in terms of the Digital Product Creation Process to design the product and the manufacturing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the realization of the Virtual Factory (VF) is the strategic goal of many manufacturing enterprises for the coming years. The industrial scenario is characterized by the dynamics of innovations increment and the product life cycle became shorter. Furthermore products and the corresponding manufacturing processes get more and more complex. Therefore, companies need new methods for the planning of manufacturing systems.
To date, the efforts have focused on the creation of an integrated environment to design and manage the manufacturing process of a new product. The future goal is to integrate Virtual Reality (VR) tools into the Product Lifecycle Management of the manufacturing industries.
In order to realize this goal the authors have conducted a study to perform VF simulation steps for a supplier of Industrial Automation Systems and have provided a structured approach focusing on interaction between simulation software and VR hardware tools in order to simulate both robotic and
manual work cells.
The first results of the study in progress have been carried out in the VR Laboratory of the Competence Regional Centre for the qualification of the Transportation Systems that has been founded by Campania Region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.