128 resultados para Gallicanisme -- 17e siècle -- Sources
Resumo:
When TiO2 powder was irradiated with a laser light (>0.8 MW peak pulse power (PPP) at 355 nm) a visible change in its colour from white to dark blue was observed. The initial rate of change of the total colour difference was related to the laser light intensity and the longer the irradiation time the more substantial the colour change. The result of X-ray diffraction (XRD) studies showed that the crystal structure of the TiO2 developed a more rutile form after laser exposure. ESR studies indicated that the colour change was associated with the generation of Ti(III) species in the photocatalyst. Electron microscopic studies showed that more spherical shaped particles of TiO2 were observed after laser treatment although the average particle size remained largely unchanged. No significant changes in the band gap or the surface area of the laser modified TiO2 were observed. The laser modified photocatalyst showed no enhancement in activity for the destruction of methylene blue, rhodamine B and stearic acids, indicating that the rutile/anatase ratio is unimportant in the destruction of the test pollutants used in this work, via TiO2 photocatalysis
Resumo:
The effects of high power pulsed laser light on a TiO2 photocatalyst (powder and 0.1% (w/v) aqueous suspension) are reported. When this material was irradiated with a laser of power over 0.8 MW peak pulse power at 355 nm wavelength a visible change in colour from white to dark blue was observed. The initial rate of change of the total colour difference is related to the laser power; the stronger the laser power the darker the colour change. The result of X-ray diffraction studies indicates that the crystal structure of the TiO2 developed a more rutile form after laser exposure. Electron microscopic studies showed that spherical shaped particles of TiO2 were observed after laser treatment. Preliminary results show enhanced photocatalytic activity for the destruction of methylene blue. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.