158 resultados para GLP-1 receptor agonists


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A structure-activity study was performed to examine the role of position 14 of human alpha-calcitonin gene-related peptide (h-alpha-CGRP) in activating the CGRP receptor. Interestingly, position 14 of h-alpha-CGRP contains a glycyl residue and is part of an alpha-helix spanning residues 8-18. Analogues [Ala(14)]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, [Asn(14)]-h-alpha-CGRP, and [Pro(14)]-h-alpha-CGRP were synthesized by solid phase peptide methodology and purified by RP-HPLC. Secondary structure was measured by circular dichroism spectroscopy. Agonist activities were determined as the analogues' ability to stimulate amylase secretion from guinea pig pancreatic acini and to relax precontracted porcine coronary arteries. Analogues [Ala(1)4]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, and [Asn(14)]-h-alpha-CGRP, all containing residues with a high helical propensity in position 14, were potent full agonists compared to h-alpha-CGRP in both tissues. Interestingly, replacement of Gly(14) of h-alpha-CGRP with these residues did not substantially increase the helical content of these analogues. [Pro(14)]-h-alpha-CGRP, predictably, has significantly lower helical content and is a 20-fold less potent agonist on coronary artery, known to contain CGRP-1 receptor subtypes, and an antagonist on pancreatic acini, known to contain CGRP-2 receptor subtypes. In conclusion, the residue in position 14 plays a structural role in stabilizing the alpha-helix spanning residues 8-18. The alpha-helix is crucial for maintaining highly potent agonist effects of h-alpha-CGRP at CGRP receptors. The wide variety of functional groups that can be tolerated in position 14 with no substantial modification of agonist effects suggests the residue in this position is not in contact with the CGRP receptor. [Pro(14)]-h-alpha-CGRP may be a useful pharmacological tool to distinguish between CGRP-1 and CGRP-2 receptor subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incretin hormones glucagon-like peptide-I (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are physiological gut peptides with insulin-releasing and extrapancreatic glucoregulatory actions. Incretin analogues/mimetics activate GLP-I or GIP receptors whilst avoiding physiological inactivation by dipeptidyl peptidase 4 (DPP-4), and they represent one of the newest classes of antidiabetic drug. The first clinically approved GLP-1 mimetic for the treatment of type-2 diabetes is exenatide (Byetta/exendin) which is administered subcutaneously twice daily. Clinical trials of liraglutide, a GLP-1 analogue suitable for once-daily administration, are ongoing. A number of other incretin molecules are at earlier stages of development. This review discusses the various attributes of GLP-1 and GIP for diabetes treatment and summarises current clinical data. Additionally, it explores the therapeutic possibilities offered by preclinical agents, such as non-peptide GLP-1 mimetics, GLP-1/glucagon hybrid peptides, and specific GIP receptor antagonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro(3))GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p <0.05) lower in (Pro(3))GIP-treated mice compared to control mice after just 9 days of treatment. (Pro(3))GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p <0.05 to p <0.001). The (Pro(3))GIP-treated group also exhibited significantly (p <0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39) amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro(3))GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro(3)GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The therapeutic potential of glucagon-like peptide-1 (GLP-1) in improving glycaemic control in diabetes has been widely studied, but the potential beneficial effects of glucose-dependent insulinotropic polypeptide (GIP) have until recently been almost overlooked. One of the major problems, however, in exploiting either GIP or GLP-1 as potential therapeutic agents is their short duration of action, due to enzymatic degradation in vivo by dipeptidylpeptidase IV (DPP IV). Therefore, this study examined the plasma stability, biological activity and antidiabetic potential of two novel NH2-terminal Ala(2)-substituted analogues of GIP, containing glycine (Gly) or serine (Ser). Following incubation in plasma, (Ser(2))GIP had a reduced hydrolysis rate compared with native GIP, while (Gly(2))GIP was completely stable. In Chinese hamster lung fibroblasts stably transfected with the human GIP receptor, GIP, (Gly(2))GIP and (Ser(2))GIP stimulated cAMP production with EC50 values of 18.2, 14.9 and 15.0 nM respectively. In the pancreatic BRIN-BD1 beta-cell line, (Gly(2))GIP and (Ser(2))GIP (10(-8) M) evoked significant increases (1.2- and 1.5-fold respectively; P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is the primary inactivator of glucoregulatory incretin hormones. This has lead to development of DPP IV inhibitors as a new class of agents for the treatment of type 2 diabetes. Recent reports indicate that other antidiabetic drugs, such as metformin, may also have inhibitory effects on DPP IV activity. In this investigation we show that high concentrations of several antidiabetic drug classes, namely thiazolidinediones, sulphonylureas, meglitinides and morphilinoguanides can inhibit DPP IV The strongest inhibitor nateglinide, the insulin-releasing meglitinide was effective at low therapeutically relevant concentrations as low as 25 mu mol/l. Nateglinide also prevented the degradation of glucagon-like peptide-1 (GLP-1) by DPP IV in a time and concentration-dependent manner. In vitro nateglinide and GLP-1 effects on insulin release were additive. In vivo nateglinide improved the glucose-lowering and insulin-releasing activity of GLP-1 in obese-diabetic ob/ob mice. This was accompanied by significantly enhanced circulating concentrations of active GLP-1(7-36)amide and lower levels of DPP IV activity. Nateglinide similarly benefited the glucose and insulin responses to feeding in ob/ob mice and such actions were abolished by coadministration of exendin(9-39) and (Pro(3))GIP to block incretin hormone action. These data indicate that the use of nateglinide as a prandial insulin-releasing agent may partly rely on inhibition of GLP-1 degradation as well as beta-cell K-ATP channel inhibition. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degreesC with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His7-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His7-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His7-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH2-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH2-terminally modified His(7)-glucitol tGLP-1 and its insulin-releasing and antihyperglycaemic activity in vivo, tGLP-1 was degraded by purified DPP IV after 4 h (43% intact) and after 12 hi 89% was converted to GLP-1(9-36)amide. In contrast > 99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His7-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691 +/- 35 mM/min) was significantly lower after administration of tGLP-1 and His7-glucitol tGLP-1 (36 and 49% less; AUC; 440 +/- 40 and 353 +/- 31 mM/min, respectively; P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this article is to review the interplay between adenosine and mast cells in asthma. Adenosine is an endogenous nucleoside released from metabolically active cells and generated extracellularly via the degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types including platelets, neutrophils and mast cells via action at specific adenosine receptors (A(1), A(2a), A(2b), A(3)). These receptors are expressed on mast cells but the exact pattern of receptor subtype expression depends on the source of the mast cells. Adenosine is also a potent bronchoconstricting agent and is suggested to contribute to the pathophysiology of asthma. Evidence is provided to suggest that the nucleoside exerts its influence on the asthmatic condition through its ability to modulate the release of mast cell derived mediators. However, the mechanism of adenosine/mast cell interaction which contributes to asthma remains unclear. Progress in the area has been hampered by the heterogeneity of mast cell responses and a lack of highly specific receptor agonists and antagonists. The expression of different adenosine receptor subtypes on mast cells is described. The final section of the review presents data to suggest that BAL mast cells may provide an accurate and relevant model for future investigations and together with the development of superior pharmacological tools, may aid the realisation of the therapeutic potential of adenosine/mast cell interactions in asthma. In conclusion, the role of adenosine in asthma is clearly complex. A better understanding of the contribution of adenosine to the asthmatic condition may lead to novel therapeutic approaches in the treatment of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Peptide YY (PYY) is a gastrointestinal hormone with physiological actions regulating appetite and energy homoeostasis. The cellular mechanisms by which nutrients stimulate PYY secretion from intestinal enteroendocrine cells are still being elucidated.

METHODS: This study comprehensively evaluated the suitability of intestinal STC-1 cells as an in vitro model of PYY secretion. PYY concentrations (both intracellular and in culture media) with other intestinal peptides (CCK, GLP-1 and GIP) demonstrated that PYY is a prominent product of STC-1 cells. Furthermore, acute and chronic PYY responses to 15 short (SCFAs)- and long-chain (LCFAs) dietary fatty acids were measured alongside parameters for DNA synthesis, cell viability and cytotoxicity.

RESULTS: We found STC-1 cells to be reliable secretors of PYY constitutively releasing PYY into cell culture media (but not into non-stimulatory buffer). We demonstrate for the first time that STC-1 cells produce PYY mRNA transcripts; that STC-1 cells produce specific time- and concentration-dependent PYY secretory responses to valeric acid; that linoleic acid and conjugated linoleic acid 9,11 (CLA 9,11) are potent PYY secretagogues; and that chronic exposure of SCFAs and LCFAs can be detrimental to STC-1 cells.

CONCLUSIONS: Our studies demonstrate the potential usefulness of STC-1 cells as an in vitro model for investigating nutrient-stimulated PYY secretion in an acute setting. Furthermore, our discovery that CLA directly stimulates L-cells to secrete PYY indicates another possible mechanism contributing to the observed effects of dietary CLA on weight loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Inflammation and endothelial dysfunction have been associated with the immunobiology of preeclampsia (PE), a significant cause of adverse pregnancy outcomes. The prevalence of PE is elevated several fold in the presence of maternal type 1 diabetes mellitus (T1DM). Although cross-sectional studies of pregnancies among women without diabetes have shown altered inflammatory markers in the presence of PE, longitudinal studies of diabetic women are lacking. In maternal serum samples, we examined the temporal associations of markers of inflammation with the subsequent development of PE in women with T1DM. RESEARCH DESIGN AND METHODS We conducted longitudinal analyses of serum C-reactive protein (CRP), adhesion molecules, and cytokines during the first (mean ± SD, 12.2 ± 1.9 weeks), second (21.6 ± 1.5 weeks), and third (31.5 ± 1.7 weeks) trimesters of pregnancy (visits 1-3, respectively). All study visits took place before the onset of PE. Covariates were BMI, HbA1c, age of onset, duration of diabetes, and mean arterial pressure. RESULTS In women with T1DM who developed PE versus those who remained normotensive, CRP tended to be higher at visits 1 (P = 0.07) and 2 (P = 0.06) and was significantly higher at visit 3 (P <0.05); soluble E-selectin and interferon-?-inducible protein-10 (IP-10) were significantly higher at visit 3; interleukin-1 receptor antagonist (IL-1ra) and eotaxin were higher and lower, respectively, at visit 2 (all P <0.05). These conclusions persisted following adjustment for covariates. CONCLUSIONS In pregnant women with T1DM, elevated CRP, soluble E-selectin, IL-1ra, and IP-10 and lower eotaxin were associated with subsequent PE. The role of inflammatory factors as markers and potential mechanisms of the high prevalence of PE in T1DM merits further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin (5-HT) receptor agonists have been reported to produce mydriasis in mice, and miosis in rabbits and humans. However, the underlying mechanisms for this action are unclear. This study was undertaken in an attempt to explore the mechanism by which 5-HT receptors are involved in the modulation of pupillary size in pentobarbital-anesthetized rats. Intravenous administration of the 5-HT receptor agonist, (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.003-3 mg/kg), elicited dose-dependent pupillary dilation, which was not affected by section of the preganglionic cervical sympathetic nerve. 8-OH-DPAT-elicited mydriatic responses were attenuated by the selective 5-HT receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2- pyridinylcyclohexanecarboxamide maleate (WAY 100635; 0.3-1 mg/kg, i.v.), as well as by the selective a -adrenoceptor antagonist, (8aR,12aS,13aS)-5,8,8a,9,10,11,12,12a,13,13a-dechydro-3-methoxy-12- (ethylsulfonyl)-6H-isoquino[2,1-g][1,6]naphthyridine hydrochloride (RS 79948; 0.3 mg/kg, i.v.), but not by the selective a -adrenoceptor antagonist, prazosin (0.3 mg/kg, i.v.). Mydriatic responses elicited by the a -adrenoceptor agonist, guanabenz (0.003-0.3 mg/kg, i.v.), were not antagonized by WAY 100635 (0.3-1 mg/kg, i.v.). To determine whether central nervous system (CNS) 5-HT receptors, like a -adrenoceptors, are involved in reflex mydriasis, voltage response curves of pupillary dilation were constructed by stimulation of the sciatic nerve in anesthetized rats. WAY 100635 (1 mg/kg, i.v.) did not antagonize the evoked reflex mydriasis, which, however, was blocked by RS 79948 (0.3 mg/kg, i.v.). Taken together, these results suggest that 8-OH-DPAT produces pupillary dilation in anesthetized rats by stimulating CNS 5-HT receptors, which in turn trigger the release of norepinephrine, presumably from the locus coeruleus. The latter reduces parasympathetic neuronal tone to the iris sphincter muscle by stimulation of postsynaptic a - adrenoceptors within the Edinger-Westphal nucleus. Unlike a - adrenoceptors, 5-HT receptors in the CNS do not mediate reflex mydriasis evoked by sciatic nerve stimulation. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the role of γ-aminobutryic acid (GABA) in the regulation of arteriolar diameter in the rat retina.

Methods.: The actions of GABA on arteriolar diameter were examined using ex vivo retinal whole-mount preparations and isolated vessel segments. In most experiments, arterioles were partially preconstricted with endothelin (Et)-1. The expression levels of GABAA and GABAB receptors on isolated rat retinal Müller cells were assessed by immunohistochemistry.

Results.: GABA (0.1–1 mM) evoked vasodilation or vasoconstriction of arterioles in whole-mount preparations. No such effects were observed with isolated vessel segments. In whole mount samples, the GABAA receptor agonist muscimol caused vasomotor responses in only a small proportion of vessels. In contrast, arteriolar responses to the GABAB receptor agonists baclofen and SKF97541 more closely resembled those observed with GABA. No responses were seen with the GABAC receptor agonist 5-methylimidazoleacetic acid. GABA-induced vasodilator responses were, for the most part, repeatable in the presence of the GABAA receptor antagonist bicuculline. These responses, however, were completely blocked in the presence of the GABAB receptor inhibitor 2-hydroxysaclofen. Strong immunolabeling for both GABAA and GABAB receptors was detected in isolated Müller cells. In the absence of Et-1–induced preconstriction, most vessels were unresponsive to bicuculline or 2-hydroxysaclofen.

Conclusions.: GABA exerts complex effects on arteriolar diameter in the rat retina. These actions appear largely dependent upon the activation of GABAB receptors in the retinal neuropile, possibly those located on perivascular Müller cells. Despite these findings, endogenous GABA appears to contribute little to the regulation of basal arteriolar diameter in the rat retina.