140 resultados para Fuel switching
Resumo:
We report on the non-volatile resistive switching properties of epitaxial nickel oxide (NiO) nanostructures, 10-100 nm wide and up to 30 nm high grown on (001)-Nb:SrTiO3 substrates. Conducting-atomic force microscopy on individual nano-islands confirms prominent bipolar switching with a maximum ON/OFF ratio of similar to 10(3) at a read voltage of similar to+0.4V. This ratio is found to decrease with increasing height of the nanostructure. Linear fittings of I-V loops reveal that low and high resistance states follow Ohmic-conduction and Schottky-emission mechanism, respectively. The switching behavior (dependence on height) is attributed to the modulation of the carrier density at the nanostructure-substrate interface due to the applied electric field.
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated.
Resumo:
Using the foraging movements of an insectivorous bat, Myotis mystacinus, we describe temporal switching of foraging behaviour in response to resource availability. These observations conform to predictions of optimized search under the Lévy flight paradigm. However, we suggest that this occurs as a result of a preference behaviour and knowledge of resource distribution. Preferential behaviour and knowledge of a familiar area generate distinct movement patterns as resource availability changes on short temporal scales. The behavioural response of predators to changes in prey fields can elicit different functional responses, which are considered to be central in the development of stable predator-prey communities. Recognizing how the foraging movements of an animal relate to environmental conditions also elucidates the evolution of optimized search and the prevalence of discrete strategies in natural systems. Applying techniques that use changes in the frequency distribution of movements facilitates exploration of the processes that underpin behavioural changes. © 2012 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Naphthalenic compounds are a rich resource for designers of fluorescent sensing/switching/logic systems. The degree of internal charge transfer (ICT) character in the fluorophore excited states can vary from negligible to substantial. Naphthalene-1,8;4,5-diimides (11–13), 1,8-naphthalimides (16) and 4-chloro-1,8-naphthalimides (15) are of the former type. The latter type is represented by the 4-alkylamino-1,8-naphthalimides (1). Whether ICT-based or not, these serve as the fluorophore in ‘fluorophore-spacer-receptor’ switching systems where PET holds sway until the receptor is bound to H+. On the other hand, 4-dialkylamino-1,8-naphthalimides (3–4) show modest H+-induced fluorescence switching unless the 4-dialkylamino group is a part of a small ring (5). Electrostatic destabilization of a non-emissive twisted internal charge transfer (ICT) excited state is the origin of this behaviour. An evolution to the non-emissive twisted ICT excited state is responsible for the weak emission of the model compound 6 (and related structures 7 and 8) across the pH range. Twisted ICT excited states are also implicated in the switch 9 and its model compound 10, which are based on the 6-dialkylamino-3H-benzimidazo[2,1-a]benz[d,e]isoquinolin-3-one fluorophore.
Resumo:
A postbuckling blade-stiffened composite panel was loaded in uniaxial compression, until failure. During loading beyond initial buckling, this panel was observed to undergo a secondary instability characterised by a dynamic mode shape change. These abrupt changes cause considerable numerical difficulties using standard path-following quasi-static solution procedures in finite element analysis. Improved methods such as the arc-length-related procedures do better at traversing certain critical points along an equilibrium path but these procedures may also encounter difficulties in highly non-linear problems. This paper presents a robust, modified explicit dynamic analysis for the modelling of postbuckling structures. This method was shown to predict the mode-switch with good accuracy and is more efficient than standard explicit dynamic analysis. (C) 2003 Elsevier Science Ltd. All rights reserved.