92 resultados para Forcing (Plants).
Resumo:
MIR spectroscopy is an established technique which has process monitoring applications in the chemical and pharmaceutical industries. Previous attempts to utilise the technology for monitoring of AD plants were of limited success, with operation hindered by severe clogging of the probe.
Novel fittings, which allow a probe to be withdrawn from the process fluid, cleaned and recalibrated in situ have now been developed to combat this clogging problem. This has allowed a spectroscopic probe to be used successfully in lab scale digesters for real time measurement of VFA concentration, a key parameter to the stability of AD plants.
This project will demonstrate the technology at a farm scale AD plant for the first time. Both real-time measurements of VFA concentrations and parameters currently measured by plant operators will be available, leading to state-of-the-art monitoring and control of the AD plant. With the improved monitoring that this probe will deliver, it is hoped to realise a 10% increase in biogas production without compromising the stability of the process. This will deliver both economic and environmental benefits.
Resumo:
Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants. We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.
Resumo:
Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order:? iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain. A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order:? iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain.
Resumo:
Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.
Resumo:
Interspecific and intertribal somatic hybrids were obtained to study the composition and function of microtubules in hybrid plants. The amiprophosmethyl-resistant mutant Nicotiana plumbaginifolia L. was used as donor; canamycin-resistant mutants N. sylvestris L. and Atropa belladonna served as recipients. Cytogenetic analysis confirmed the hybrid nature of the clones selected. Immunoflourescent analysis showed that constitutions of mitotic spindles in regenerating protoplast, isolated from the hybrid NpAb-107 and the mutant N. plunbaginifolia, show no change after a 2-hour treatment with 5 mu M of amiprophosmethyl; in A. belladonna, the division spindle is completely destroyed under these conditions. Tubulin was isolated from the hybrid NpAb-107 and separated by two-dimensional electrophoresis. The results showed that NpAb-107 has the beta-tubulin isoform specific for N. plumbaginifolia in addition to all isoforms of A. belladonna.
Resumo:
We present a decadal-scale late Holocene climate record based on diatoms, biogenic silica, and grain size from a 12-m sediment core (VEC02A04) obtained from Frederick Sound in the Seymour-Belize Inlet Complex of British Columbia, Canada. Sediments are characterized by graded, massive, and laminated intervals. Laminated intervals are most common between c. 2948–2708 cal. yr BP and c. 1992–1727 cal. yr BP. Increased preservation of laminated sediments and diatom assemblage changes at this time suggest that cli- mate became moderately drier and cooler relative to the preceding and succeeding intervals. Spectral and wavelet analyses are used to test for statistically significant periodicities in time series of proxies of primary production (total diatom abundance, biogenic silica) and hydrology (grain size) preserved in the Frederick Sound record. Periodicities of c. 42–53, 60–70, 82–89, 241–243, and 380 yrs are present. Results are com- pared to reconstructed sunspot number data of Solanki et al. (2004) using cross wavelet transform to evalu- ate the role of solar forcing on NE Pacific climate. Significant common power of periodicities between c. 42– 60, 70–89, 241–243, and of 380 yrs occur, suggesting that celestial forcing impacted late Holocene climate at Frederick Sound. Replication of the c. 241–243 yr periodicity in sunspot time series is most pronounced be- tween c. 2900 cal. yr BP and c. 2000 cal. yr BP, broadly correlative to the timing of maximum preservation of laminated sedimentary successions and diatom assemblage changes. High solar activity at the Suess/de Vries band may have been manifested as a prolonged westward shift and/or weakening of the Aleutian Low in the mid-late Holocene, which would have diverted fewer North Pacific storms and resulted in the relatively dry conditions reconstructed for the Seymour-Belize Inlet Complex.
Resumo:
Aim: We used a combination of modelling and genetic approaches to investigate whether Pinguicula grandiflora and Saxifraga spathularis, two species that exhibit disjunct Lusitanian distributions, may have persisted through the Last Glacial Maximum (LGM, c. 21 ka) in separate northern and southern refugia.
Location: Northern and eastern Spain and south-western Ireland.
Methods: Palaeodistribution modelling using maxent was used to identify putative refugial areas for both species at the LGM, as well as to estimate their distributions during the Last Interglacial (LIG, c. 120 ka). Phylogeographical analysis of samples from across both species' ranges was carried out using one chloroplast and three nuclear loci for each species.
Results: The palaeodistribution models identified very limited suitable habitat for either species during the LIG, followed by expansion during the LGM. A single, large refugium across northern Spain and southern France was postulated for P. grandiflora. Two suitable regions were identified for S. spathularis: one in northern Spain, corresponding to the eastern part of the species' present-day distribution in Iberia, and the other on the continental shelf off the west coast of Brittany, south of the limit of the British–Irish ice sheet. Phylogeographical analyses indicated extremely reduced levels of genetic diversity in Irish populations of P. grandiflora relative to those in mainland Europe, but comparable levels of diversity between Irish and mainland European populations of S. spathularis, including the occurrence of private hapotypes in both regions.
Main conclusions: Modelling and phylogeographical analyses indicate that P. grandiflora persisted through the LGM in a southern refugium, and achieved its current Irish distribution via northward dispersal after the retreat of the ice sheets. Although the results for S. spathularis are more equivocal, a similar recolonization scenario also seems the most likely explanation for the species' current distribution.