209 resultados para Food science
Resumo:
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease in cattle and other ruminants and has been implicated as a possible cause of Crohn's disease in humans. The organism gains access to raw milk directly through excretion into the milk within the udder and indirectly through faecal contamination during milking. MAP has been shown to survive commercial pasteurization in naturally infected milk, even at the extended holding time of 25 s. Pasteurized milk must therefore be considered a vehicle of transmission of MAP to humans. isolation methods for MAP from milk are problematical, chiefly because of the absence of a suitable selective medium. This makes food surveillance programs and research on this topic difficult. The MAP problem can be addressed in two main ways: by devising a milk-processing strategy that ensures the death of the organism: and/or strategies at farm level to prevent access of the organism into raw milk. Much of the research to date has been devoted to determining ifa problem exists and, if so, the extent of the problem. Little has been directed at possible solutions. Given the current state of information on this topic and the potential consequences for the dairy industry research is urgently needed so that a better understanding of the risks and the efficacy of possible processing solutions can be determined.
Resumo:
In vivo, advanced glycation endproducts (AGEs) are linked to various diseases, particularly those associated with diabetes. AGEs are also formed when many foods are thermally processed. The extent to which dietary AGEs are absorbed by the gastrointestinal (GI) tract and their possible role in the onset and promotion of disease are currently of considerable interest. This paper reviews information that supports the argument that dietary AGEs are not a risk to human health.
Resumo:
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.
Resumo:
Concentrations of the coccidiostat nicarbazin as low as 2 mg/kg in feed can result in violative drug residues arising in poultry liver. A lateral flow device (LFD) was developed for the detection of contaminating concentrations of nicarbazin following solvent extraction of poultry feeds. Test results, as determined by both visual and instrumental measurement, are available within minutes. For 22 feed samples, nicarbazin-free and fortified at 2 mg/kg, the % relative inhibition ranged from 0 to 45% and from 53 to 85%, respectively. Nicarbazin contamination at the critical concentration (2 mg/kg) can be determined in all cases providing the sampling is representative. A wide range of feed samples taken at a mill that incorporated nicarbazin into poultry feed were analyzed. Data generated for these samples by both the LFDs and a mass spectrometric method were compared, and a significant correlation was achieved.
Resumo:
Anticoccidials are compounds that are widely used as feed additives to prevent and treat coccidiosis. They are licensed for use in a prescribed concentration and during a certain time interval for broilers and pullets but not for laying hens. It was shown in the past that carry-over at the feeding mill is found to be the main reason for the presence of residues in eggs. An animal experiment was set up to investigate the effect of carry-over at the feeding mill on the presence of residues of anticoccidials in eggs. For the compounds diclazuril, robenidine, halofuginone and nicarbazin in combination with narasin, two concentration levels were tested: the maximum allowed concentration for broilers (100%) and a concentration corresponding to 5% carry-over during feed preparation. Also dimetridazole was included in the experiment but only at one concentration level. Eggs were sampled during treatment (14 days) and for a period of 30 days after withdrawal of the anticoccidial-containing feed. Residues were determined, and deposition and depletion curves were generated. Analyses were performed by ELISA and LC-MS/MS. For all compounds, substantial residues could be found in the 5% groups, which points out the risk of carry-over at the feeding mill. The distribution of the residues between egg yolk and white was determined by analyzing both fractions.
Resumo:
Nicarbazin and halofuginone have been widely used as coccidiostats for the prevention and treatment of coccidiosis in poultry. It has been shown that accidental cross-contamination of feed can lead to residues of these compounds in eggs and/or muscle. This paper describes a direct competitive assay for detecting halofuginone and nicarbazin, developed as qualitative screening assay. In an optimized competitive ELISA, antibodies showed 50% binding inhibition at approximately 0.08 ng ml(-1) for halofuginone and 2.5 ng ml(-1) for dinitrocarbanilide (marker residue for nicarbazin). Extraction from the matrix was carried out with acetonitrile followed by a wash with hexane. The assay's detection capability (CCbeta) for halofuginone was
Resumo:
The effect of flavor amplification on sensory-specfic satiety was investigated. Nineteen young adults (mean age = 25 years) and 19 elderly adults (mean age = 72 years) rated the sensory properties of six foods, and were then asked to consume normal-flavored or flavor-amplified strawberry yogurt until comfortably full. The participants then re-rated the sensory properties of the six foods. There were no cl differences in the amount of yogurt consumed in either age group. Moreover flavor-fortifying the yogurt had no effect on the amount consumed in either age group. The consumption of both yogurts caused a reduction in rated pleasantness of the yogurt among young adults, but no change in the rated pleasantness of the uneaten foods. However, the elderly did not show a decrease in the rated pleasantness of any of the foods contained in the taste trays This study indicates that sensations of sensory-specific satiety were significantly reduced in the elderly, and these sensations were not induced by the addition of strawberry flavor to the yogurt.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of
Resumo:
The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.
Resumo:
Compounds possessing antioxidant activity play a crucial role in delaying or preventing lipid oxidation in foods and beverages during processing and storage. Such reactions lead to loss of product quality, especially as a consequence of off-flavor formation. The aim of this study was to determine the antioxidant activity of kilned (standard) and roasted (speciality) malts in relation to phenolic compounds, sugars, amino acids, and color [assessed as European Brewing Convention units (degrees EBC) and absorbance at 420 nm]. The concentrations of sugars and amino acids decreased with the intensity of the applied heat treatment, and this was attributed to the extent of the Maillard reaction, as well as sugar caramelization, in the highly roasted malts. Proline, followed by glutamine, was the most abundant free amino/imino acid in the malt samples, except those that were highly roasted, and maltose was the most abundant sugar in all malts. Levels of total phenolic compounds decreased with heat treatment. Catechin and ferulic acid were the most abundant phenolic compounds in the majority of the malts, and amounts were highest in the kilned samples. In highly roasted malts, degradation products of ferulic acid were identified. Antioxidant activity increased with the intensity of heating, in parallel with color formation, and was significantly higher for roasted malts compared to kilned malts. In kilned malts, phenolic compounds were the main identified contributors to antioxidant activity, with Maillard reaction products also playing a role. In roasted malts, Maillard reaction products were responsible for the majority of the antioxidant activity.
Resumo:
The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.
Resumo:
This paper reviews the use of plant extracts as vegetable coagulants for cheesemaking. It covers the plants used as sources of coagulants, with a historical overview and particular emphasis on Cynara species. The genus Cynara L., its composition, milk clotting and proteolytic enzymes (cardosins) and their specificity towards peptide linkages are also described. Cheeses produced in the Iberian Peninsula using Cynara L. as coagulant are documented. Cynara L. is still the most used vegetable coagulant in cheesemaking, and also the most investigated. However, much work remains to be done to understand its action during cheese maturation and further characterization.
Resumo:
Proteolysis of Serpa cheese produced traditionally (B) and semi-industrially (C) was evaluated for the first time by determination of nitrogen content and capillary zone electrophoresis (CZE). A citrate dispersion of cheese was fractionated to determine the nitrogen in pH 4.4, trichloroacetic and phosphotungstic acid soluble fractions (pH 4.4-SN, TCA-SN and PTA-SN, respectively). The pH 4.4-SN was significantly higher for B ( P <0.001), while TCA-SN was significantly higher for C ( P <0.001). PTA-SN was also higher for C but at 60 days ripening no significant difference was found between B and C. Degradation of alpha(s1) - and beta-caseins evaluated by CZE was in good agreement with the maturation index (pH 4.4-SN/TN).