257 resultados para Eugene Sandow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantification of nanoparticles in biological systems (i.e., cells, tissues and organs) is becoming a vital part of nanotoxicological and nanomedical fields. Dose is a key parameter when assessing behavior and any potential risk of nanomaterials. Various techniques for nanoparticle quantification in cells and tissues already exist but will need further development in order to make measurements reliable, reproducible and intercomparable between different techniques. Microscopy allows detection and location of nanoparticles in cells and has been used extensively in recent years to characterize nanoparticles and their pathways in living systems. Besides microscopical techniques (light microscopy and electron microscopy mainly), analytical techniques such as mass spectrometry, an established technique in trace element analysis, have been used in nanoparticle research. Other techniques require 'labeled particles, fluorescently, radioactively or magnetically. However, these techniques lack spatial resolution and subcellular localization is not possible. To date, only electron microscopy offers the resolving power to determine accumulation of nanoparticles in cells due to its ability to image particles individually. So-called super-resolution light microscopy techniques are emerging to provide sufficient resolution on the light microscopy level to image or 'see particles as individual particles. Nevertheless, all microscopy techniques require statistically sound sampling strategies in order to provide quantitative results. Stereology is a well-known sampling technique in various areas and, in combination with electron microscopy, proves highly successful with regard to quantification of nanoparticle uptake by cells. © 2010 Future Medicine Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinically accessible compounds that arrest or reverse the effects of amyloid-ß (Aß) on progressively developing behavioural symptomatology and neuropathology in Alzheimer's disease (AD) have yet to become available. However, a viable strategy may be to target and neutralise soluble Aß oligomers, which have been shown to mediate synaptic dysfunction and to produce cognitive deficits in the intact organism. Inhibiting the aggregation of Aß is therapeutically attractive, as Aß aggregation is a pathological event and pharmacological interventions targeting this are likely to have a non-toxic profile. A behavioural assay, the alternating-lever cyclic-ratio schedule, was used to assess the effect of Aß oligomers and the non-peptide small molecule RS-0406 in male Sprague-Dawley rats. RS-0406 has been shown to inhibit Aß1-42 fibrillogenesis and protect against Aß1-42–induced cytotoxicity in primary hippocampal neurons. In the current study, RS-0406 ameliorated the adverse effects of secreted oligomers of human Aß on behaviour and dose dependently reduced the behavioural effects of Aß oligomers, with the highest dose, 10 µM, maintaining behaviour approximately at control levels. This effect appeared to be central; peripheral confounds having been extensively investigated. This is the first published report on the effects of RS-0406 in vivo and indicates that RS-0406 has potential as a pharmacotherapeutic intervention for behavioural deficits seen in the early stages of AD, and possibly as an intervention in the development of AD neuropathology. Indeed, an analogue of RS-0406 that could be administered peripherally might be a realistic candidate for the clinical treatment of AD.