129 resultados para Elliptically Polarized


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu2:13 and Eu2:23 that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu2:13 and Eu2:23.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in the development of 2D microstrip detectors open up new possibilities for hard x-ray spectroscopy, in particular for polarization studies. These detectors make ideal Compton polarimeters, which enable us to study precisely the polarization of hard x-rays. Here, we present recent results from measurements of Radiative Electron Capture into the K-shell of highly-charged uranium ions. The experiments were performed with a novel 2D Si(Li) Compton polarimeter at the Experimental Storage Ring at GSI. Stored and cooled beams of U91+ and U92+ ions, with kinetic energies of 43 MeV/u and 96 MeV/u respectively, were crossed with a hydrogen gasjet. The preliminary data analysis shows x-rays from the K-REC process, emitted perpendicularly to the ion beam, to be strongly linearly polarized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissociation of the singly ionized CO2+ ion has been investigated in an intense ultrafast (55 fs) laser field, by employing an intensity selective scan technique and comparing the signals from linearly and circularly polarized pulses. Non-sequential contributions have been observed unambiguously for the first time, highlighting the role of rescattering in the dissociative process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of poly(e-caprolactone) (PCL) and molybdenum sulfur iodine (MoSI) nanowires were prepared using twin-screw extrusion. Extensive microscopic examination of the composites revealed the nanowires were well dispersed in the PCL matrix, although bundles of Mo6S3I6 ropes were evident at higher loadings. Secondary electron imaging (SEI) showed the nanowires had formed an extensive network throughout the PCL matrix, resulting in increased electrical conductivity of PCL, by eight orders of magnitude, and an electrical percolation threshold of 6.5T10S3vol%. Thermal analysis (DSC), WAXD, and hot stage polarized optical microscopy (HSPOM) experiments revealed Mo6S3I6 addition altered PCL crystallization kinetics, nucleation density, and crystalline content. A greater number of smaller spherulites were formed via heterogeneous nucleation. The onset of thermal decomposition (TGA) of PCL decreased by 70-C, a consequence of the thermal degradation of Mo6S3I6 to MoO3, which in turn accelerates the formation of volatile gases during the first stage of PCL decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio calculations for the strongly exoergic Li2+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article suggests that while the report of the Independent Commission on Policing (ICP) provides a police reform blueprint for Northern Ireland and elsewhere, it can also be seen as an attempt to engage more elliptically with contemporary debates in security governance vis-a-vis the increasingly fragmented nature of late-modern policing and the role of the state. A decade into the reform process in Northern Ireland and in spite of the networked approach postulated by the ICP, the public police continue to enjoy a pre-eminent place and little evidence exists of any significant weakening of state steering and rowing of security. The discussion proposes a tentative typology explaining the continued colonization of security spaces by the State using constituent attendant processes of compartmentalizing, crowding out and corralling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10(19) W/cm(2). 100 MeV proton beams are obtained by increasing the intensities to 2 x 10(20) W/cm(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N + 1) saddle points in complex time, which form a characteristic "smile." Numerical calculations are performed for H(-) in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10(10), 5 x 10(10), and 10(11) W/cm(2), and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parametric coupling between large amplitude magnetic field-aligned circularly polarized electromagnetic ion-cyclotron (EMIC) waves and ponderomotively driven ion-acoustic perturbations in magnetized space plasmas is considered. A cubic nonlinear Schrodinger equation for the modulated EMIC wave envelope is derived, and then solved analytically. The modulated EMIC waves are found to be stable (unstable) against ion-acoustic density perturbations, in the subsonic (supersonic, respectively) case, and they may propagate as "supersonic bright" ("subsonic dark", i.e. "black" or "grey") type envelope solitons, i.e. electric field pulses (holes, voids), associated with (co-propagating) density humps. Explicit bright and dark (black/grey) envelope excitation profiles are presented, and the relevance of our investigation to space plasmas is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrodinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver nanorods have been grown by electrodeposition into thin film porous alumina templates (AAO). Optical transmission measurements using p-polarized incident white light shows clear plasmon resonance extinction peaks. We successfully model the dependence on angle in incidence of extinction peak height and position using a multiple-multipoles (MMP) approach with the different spectral features being clearly associated with the effective electric field distribution and coupling between individual nanorods.