133 resultados para Electrostatic Separation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real plasmas are often caracterized by the presence of excess energetic particle populations, resulting in a long-tailed non-Maxwellian distribution. In Space plasma physics, this phenomenon is usually modelled via a kappa-type distribution. This presentation is dedicated to an investigation, from first principles, of the effect of superthermality on the characteristics of dusty plasma modes. We employ a kappa distribution function to model the superthermality of the background components (electrons and/or ions). Background superthermality is shown to modify the charge screening mechanism in dusty plasmas, thus affecting the linear dispersion laws of both low- and higher frequency DP modes substantially. Various experimentally observed effects may thus be interpreted as manifestations of superthermality. Focusing on the features of nonlinear excitations (solitons) as they occur in different dusty plasma modes, we investigate the role of superthermality in their propagation dynamics (existence laws, stability profile) and characteristics (geometry).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes max separation clustering (MSC), a new non-hierarchical clustering method used for feature extraction from optical emission spectroscopy (OES) data for plasma etch process control applications. OES data is high dimensional and inherently highly redundant with the result that it is difficult if not impossible to recognize useful features and key variables by direct visualization. MSC is developed for clustering variables with distinctive patterns and providing effective pattern representation by a small number of representative variables. The relationship between signal-to-noise ratio (SNR) and clustering performance is highlighted, leading to a requirement that low SNR signals be removed before applying MSC. Experimental results on industrial OES data show that MSC with low SNR signal removal produces effective summarization of the dominant patterns in the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter ? was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter ? was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (?G mix) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An appreciation of the quantity of streamflow derived from the main hydrological pathways involved in transporting diffuse contaminants is critical when addressing a wide range of water resource management issues. In order to assess hydrological pathway contributions to streams, it is necessary to provide feasible upper and lower bounds for flows in each pathway. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways and subsequently the quicker overland and interflow pathways. This paper investigates the effectiveness of a multi-faceted approach applying different hydrograph separation techniques, supplemented by lumped hydrological modelling, for calculating the Baseflow Index (BFI), for the development of an integrated approach to hydrograph separation. A semi-distributed, lumped and deterministic rainfall runoff model known as NAM has been applied to ten catchments (ranging from 5 to 699 km2). While this modelling approach is useful as a validation method, NAM itself is also an important tool for investigation. These separation techniques provide a large variation in BFI, a difference of 0.741 predicted for BFI in a catchment with the less reliable fixed and sliding interval methods and local minima turning point methods included. This variation is reduced to 0.167 with these methods omitted. The Boughton and Eckhardt algorithms, while quite subjective in their use, provide quick and easily implemented approaches for obtaining physically realistic hydrograph separations. It is observed that while the different separation techniques give varying BFI values for each of the catchments, a recharge coefficient approach developed in Ireland, when applied in conjunction with the Master recession Curve Tabulation method, predict estimates in agreement with those obtained using the NAM model, and these estimates are also consistent with the study catchments’ geology. These two separation methods, in conjunction with the NAM model, were selected to form an integrated approach to assessing BFI in catchments.