68 resultados para Electronics in military engineering


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonation and chloride ingress are the two main causes of corrosion in reinforced concrete structures. An investigation to monitor the ingress of chlorides and the effect of carbonation on chloride ingression during an accelerated 12 month cyclic wetting and drying exposure regime that simulates conditions in which multiple mode transport mechanisms are active was conducted on ground granulated blast furnace slag (GGBS) concrete. The penetration of chloride and carbon dioxide was evaluated using water and acid soluble chloride profiles and phenolphthalein indicator, respectively. The results indicated that when chloride and carbon dioxide ingress concomitantly the effects can be adverse. Carbonation has a detrimental effect on the binding capacity of the concrete, increasing the concentration of free (water soluble) chlorides. This contributed to greater concentration and greater penetration of chlorides and thus an increased corrosion risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis of both soil measurements and climatic variables gathered by several autonomous nodes deployed in field. This enables a closed loop control scheme to adapt the decision support system to local perturbations and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in the South-East of Spain. Performance is tested against decisions taken by a human expert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen’s University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline