72 resultados para Eigenvalue Bounds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new anytime algorithm for the marginal MAP problem in graphical models of bounded treewidth. We show asymptotic convergence and theoretical error bounds for any fixed step. Experiments show that it compares well to a state-of-the-art systematic search algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new results on the complexity of graph-theoretical models that represent probabilities (Bayesian networks) and that represent interval and set valued probabilities (credal networks). We define a new class of networks with bounded width, and introduce a new decision problem for Bayesian networks, the maximin a posteriori. We present new links between the Bayesian and credal networks, and present new results both for Bayesian networks (most probable explanation with observations, maximin a posteriori) and for credal networks (bounds on probabilities a posteriori, most probable explanation with and without observations, maximum a posteriori).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A credal network is a graphical tool for representation and manipulation of uncertainty, where probability values may be imprecise or indeterminate. A credal network associates a directed acyclic graph with a collection of sets of probability measures; in this context, inference is the computation of tight lower and upper bounds for conditional probabilities. In this paper we present new algorithms for inference in credal networks based on multilinear programming techniques. Experiments indicate that these new algorithms have better performance than existing ones, in the sense that they can produce more accurate results in larger networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This article focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. In particular, the seemingly obvious lower bounds of Ω(m) messages, where m is the number of edges in the network, and Ω(D) time, where D is the network diameter, are nontrivial to show for randomized (Monte Carlo) algorithms. (Recent results, showing that even Ω(n), where n is the number of nodes in the network, is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms, except for the restricted case of comparison algorithms, where it was also required that nodes may not wake up spontaneously and that D and n were not known. We establish these fundamental lower bounds in this article for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (namely, algorithms that work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. To show that these bounds are tight, we present an O(m) messages algorithm. An O(D) time leader election algorithm is known. A slight adaptation of our lower bound technique gives rise to an Ω(m) message lower bound for randomized broadcast algorithms. 

An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. The answer is known to be negative in the deterministic setting. We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that tradeoff messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demand Response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralised agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus it is desirable to use a scalable decentralised algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for Peak Minimisation (PM) based on Dantzig-Wolfe Decomposition (DWD). In addition, a Time Weighted Maximisation option is included in the cost function which improves the Quality of Service for devices seeking to receive their desired energy sooner rather than later. The paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization of Android applications. Empirical evaluation with a dataset of real malware and benign samples show that detection rate of over 96% with a very low false positive rate is achievable using the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the proliferation of geo-positioning and geo-tagging techniques, spatio-textual objects that possess both a geographical location and a textual description are gaining in prevalence, and spatial keyword queries that exploit both location and textual description are gaining in prominence. However, the queries studied so far generally focus on finding individual objects that each satisfy a query rather than finding groups of objects where the objects in a group together satisfy a query.

We define the problem of retrieving a group of spatio-textual objects such that the group's keywords cover the query's keywords and such that the objects are nearest to the query location and have the smallest inter-object distances. Specifically, we study three instantiations of this problem, all of which are NP-hard. We devise exact solutions as well as approximate solutions with provable approximation bounds to the problems. In addition, we solve the problems of retrieving top-k groups of three instantiations, and study a weighted version of the problem that incorporates object weights. We present empirical studies that offer insight into the efficiency of the solutions, as well as the accuracy of the approximate solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the practical use of Prony Analysis to identify small signal oscillation mode parameters from simulated and actual phasor measurement unit (PMU) ringdown data. A well-known two-area four-machine power system was considered as a study case while the latest PMU ringdown data were collected from a double circuit 275 kV main interconnector on the Irish power system. The eigenvalue analysis and power spectral density were also conducted for the purpose of comparison. The capability of Prony Analysis to identify the mode parameters from three different types of simulated PMU ringdown data has been shown successfully. Furthermore, the results indicate that the Irish power system has dominant frequency modes at different frequencies. However, each mode has good system damping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study the achievable ergodic sum-rate of multiuser multiple-input multiple-output downlink systems in Rician fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by using the Mullen’s inequality, and then use it to analyze the effect of channel mean information on the achievable ergodic sum-rate. A novel statistical-eigenmode space-division multiple-access (SESDMA) downlink transmission scheme is then proposed. For this scheme, we derive an exact analytical closed-form expression for the achievable ergodic rate and present tractable tight upper and lower bounds. Based on our analysis, we gain valuable insights into the system parameters, such as the number of transmit antennas, the signal-to-noise ratio (SNR) and Rician K-factor on the system sum-rate. Results show that the sum-rate converges to a saturation value in the high SNR regime and tends to a lower limit for the low Rician K-factor case. In addition, we compare the achievable ergodic sum-rate between SE-SDMA and zeroforcing beamforming with perfect channel state information at the base station. Our results reveal that the rate gap tends to zero in the high Rician K-factor regime. Finally, numerical results are presented to validate our analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of 5G enabling technologies brings new challenges to the design of power amplifiers (PAs). In particular, there is a strong demand for low-cost, nonlinear PAs which, however, introduce nonlinear distortions. On the other hand, contemporary expensive PAs show great power efficiency in their nonlinear region. Inspired by this trade-off between nonlinearity distortions and efficiency, finding an optimal operating point is highly desirable. Hence, it is first necessary to fully understand how and how much the performance of multiple-input multiple-output (MIMO) systems deteriorates with PA nonlinearities. In this paper, we first reduce the ergodic achievable rate (EAR) optimization from a power allocation to a power control problem with only one optimization variable, i.e. total input power. Then, we develop a closed-form expression for the EAR, where this variable is fixed. Since this expression is intractable for further analysis, two simple lower bounds and one upper bound are proposed. These bounds enable us to find the best input power and approach the channel capacity. Finally, our simulation results evaluate the EAR of MIMO channels in the presence of nonlinearities. An important observation is that the MIMO performance can be significantly degraded if we utilize the whole power budget.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the achievable sum-rate of massive multiple-input multiple-output (MIMO) systems in the presence of channel aging. For the uplink, by assuming that the base station (BS) deploys maximum ratio combining (MRC) or zero-forcing (ZF) receivers, we present tight closed-form lower bounds on the achievable sum-rate for both receivers with aged channel state information (CSI). In addition, the benefit of implementing channel prediction methods on the sum-rate is examined, and closed-form sum rate lower bounds are derived. Moreover, the impact of channel aging and channel prediction on the power scaling law is characterized. Extension to the downlink scenario and multi-cell scenario are also considered. It is found that, for a system with/without channel prediction, the transmit power of each user can be scaled down at most by 1= p M (where M is the number of BS antennas), which indicates that aged CSI does not degrade the power scaling law, and channel prediction does not enhance the power scaling law; instead, these phenomena affect the achievable sum-rate by degrading or enhancing the effective signal to interference and noise ratio, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the performance of amplify-and-forward dual-hop relaying systems in the presence of in-phase and quadrature-phase imbalance (IQI) at the relay node. In particular, an exact analytical expression for and tight lower bounds on the outage probability are derived over independent, non-identically distributed Nakagami-m fading channels. Moreover, tractable upper and lower bounds on the ergodic capacity are presented at arbitrary signal-to-noise ratios (SNRs). Some special cases of practical interest (e.g., Rayleigh and Nakagami-0.5 fading) are also studied. An asymptotic analysis is performed in the high SNR regime, where we observe that IQI results in a ceiling effect on the signal-to-interference-plus-noise ratio (SINR), which depends only on the level of I/Q impairments, i.e., the joint image rejection ratio. Finally, the optimal I/Q amplitude and phase mismatch parameters are provided for maximizing the SINR ceiling, thus improving the system performance. An interesting observation is that, under a fixed total phase mismatch constraint, it is optimal to have the same level of transmitter (TX) and receiver (RX) phase mismatch at the relay node, while the optimal values for the TX and RX amplitude mismatch should be inversely proportional to each other.