185 resultados para EXCITATION CROSS-SECTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LS R-matrix method was used to compute new photoionization cross sections for Fe II. Results are compared with available experimental data and with previous calculations of the cross section. We also present the first fine-structure photoionization data for this ion obtained with the fully-relativistic DARC codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inelastic electron scattering from light atomic species is of fundamental importance and has significant applications in fusion-plasma modeling. Therefore, it is of interest to apply advanced nonperturbative, close-coupling methods to the determination of electron-impact excitation for these atoms. Here we present the results of R matrix with pseudostate (RMPS) calculations of electron-impact excitation cross sections through the n=4 terms in Be, Be+, Be2+, and Be3+. In order to determine the effects of coupling of the bound states to the target continuum in these species, we compare the RMPS results with those from standard R-matrix calculations. In addition, we have performed time-dependent close-coupling calculations for excitation from the ground and the metastable terms of Be+ and the metastable term of Be3+. In general, these results are found to agree with those from our RMPS calculations. The full set of data resulting from this work is now available on the Oak Ridge National Laboratory Controlled Fusion Atomic Data Center web site, and will be employed for collisional-radiative modeling of Be in magnetically confined plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Emission from Ar III is seen in planetary nebulae, in H II regions, and from laboratory plasmas. The analysis of such spectra requires accurate electron impact excitation data. Aims: The aim of this work is to improve the electron impact excitation data available for Ar2+, for application in studies of planetary nebulae and laboratory plasma spectra. The effects of the new data on diagnostic line ratios are also studied. Methods: Electron-impact excitation collision strengths have been calculated using the R-Matrix Intermediate-Coupling Frame-Transformation method and the R-Matrix Breit-Pauli method. Excitation cross sections are calculated between all levels of the configurations 3s^23p^4, 3s3p^5, 3p^6, 3p^53d, and 3s^23p^3nl (3d ≤ nl ≤ 5s). Maxwellian effective collision strengths are generated from the collision strength data. Results: Good agreement is found in the collision strengths calculated using the two R-Matrix methods. The collision strengths are compared with literature values for transitions within the 3s^23p4 configuration. The new data has a small effect on Te values obtained from the I(λ7135 Å+ λ7751 Å)/ I(λ5192 Å) line ratio, and a larger effect on the Ne values obtained from the I(λ7135 Å)/I(λ9 μm) line ratio. The final effective collision strength data is archived online.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute Se photoionization cross-section measurements and Dirac-Coulomb R -matrix calculations are reported for the photon energy range 18.0 eV – 31.0 eV, which spans the ionization thresholds of the 4 S 0 3/2 ground state and the low-lying 2 D 0 3/2,5/2 and 2 P 0 1/2,3/2 metastable states. The determination of the photoionization and recombination properties of n -capture element ions is motivated by their astrophysical detection and the importance of their elemental abundances in testing theories of nucleosynthesis and stellar structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New absolute cross sections for dissociative electron attachment to HCCCN (cyanoacetylene or propiolonitrile) in the range of 0-10 eV electron energy are presented here, which have been determined from a new analysis of previously reported data (Graupner et al 2006 New J. Phys. 8 117). The highest cross sections are observed for the formation of CN- at 5.3 eV and CCCN- at 5.1 eV; approximately 0.06 Å2 and 0.05 Å2 respectively. As part of the re-analysis, it was necessary to determine absolute cross sections for electron-impact ionization of HCCCN with the binary-encounter Bethe method. These electron-impact ionization absolute cross sections for HCCCN are also presented here; the maximum value was found to be ∼6.6 Å2 at ∼80 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent fully relativistic calculations of radiative rates and electron impact excitation cross-sections for FeXIII are used to generate emission-line ratios involving 3s23p2-3s3p3 and 3s23p2-3s23p3d transitions in the 170-225 and 235-450 Å wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new FeXIII emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 Å. However, major discrepancies between theory and observation remain for several FeXIII transitions, as previously found by Landi and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s23p3d1D2 as their upper level. The most useful FeXIII electron-density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in Ne over the range 108-1011cm-3. It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170-225 Å wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235-450 Å.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32-49 angstrom portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low- Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50-77 angstrom wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas.
Methods: Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities.
Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.