67 resultados para Drag calculations
Resumo:
For applications to laboratory and astrophysical plasmas, there is a great need for accurate electron-impact excitation data between individual levels in the lower charge-state ions of iron. Recently, we have reported on the first intermediate-coupling R -matrix calculation of electron-impact excitation in Fe 4+ , in which the close-coupling expansion of the target included levels from both ground and excited configurations (Ballance et al 2007 J. Phys. B: At. Mol. Opt. Phys. [/0953-4075/40/23/f01] 40 F327 , 2008 Europhys. News 39 14). In this paper, we present the results of two large intermediate-coupling Dirac R -matrix calculations of electron-impact excitation of Fe 5+ . The results from the two calculations, which differ only in the configuration–interaction expansions of the target, are compared. These comparisons provide some indication of the accuracy of the calculations and the resulting data should be useful in modelling plasmas containing iron.
Resumo:
Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.
Resumo:
Photoionization cross section calculations on the halogen-like ions; Kr + and Xe + have been performed for a photon energy range from each ion threshold to 15 eV, using large-scale close-coupling calculations within the Dirac--Coulomb R -matrix approximation. The results from our theoretical work are compared with recent measurements made at the ASTRID merged-beam set-up at the University of Aarhus in Denmark and from the Fourier transform ion cyclotron resonance trap method at the SOLEIL synchrotron radiation facility in Saint-Aubin, France Bizau et al (2011 J. Phys. B: At. Mol. Opt. Phys. 44 055205) and the advanced light source M{ü}ller (2012 private communication), Aguliar et al (2012 J. Phys.: Conf. Ser . at press). For each of these complex ions our theoretical cross section results over the photon energy range investigated are seen to be in excellent agreement with experiment. Resonance energy positions and quantum defects of the prominent Rydberg resonances series identified in the spectra are compared with experiment for these complex halogen-like ions.
Resumo:
Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schr\"odinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. In this report, various examples are shown from our theoretical results compared with experimental results obtained from Synchrotron Radiation facilities where the Cray architecture at HLRS is playing an integral part in our computational projects.
Resumo:
We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.
Resumo:
We present spectral modeling results for neutral helium. Our underlying atomic data contains radiative transition rates that are generated from atomic structure calculations and electron-impact excitation rates, that are determined from both the standard R-matrix method and the R-matrix with pseudostates RMPS method. In this paper, we focus on transitions of particular importance to diagnostic line ratios. For example, our calculated rate coefficient for the electron-impact transition 1s3s 1S→1s3p 1P, which has a pronounced effect on the 728.1 nm diagnostic spectral line, is found to be in good agreement with previous experimental mea- surements. We also consider transitions from the 1s2 1S ground and 1s2s 3S terms to terms of the n=4 shell. They are found to be affected significantly by coupling of the bound states to the target continuum continuum coupling, which is included in our RMPS calculation, but not in our standard R-matrix calculation. We perform collisional-radiative calculations to determine spectral line intensity ratios for three ratios of particular interest, namely the 504.8 nm/471.3 nm, 492.2 nm/471.3 nm, and 492.2 nm/504.8 nm line ratios. Comparing our results determined from the RMPS excitation rates with those from the standard R-matrix excitation rates, we find that continuum coupling affects the rate coefficients significantly, leading to different values for all three line ratios. We also compare our modeling results with spectral measurements taken recently on the Auburn Helicon plasma device, finding that the ground and metastable populations are not in equilibrium, and that the experimental measurements are more consistent with the 1s2s 3S metastable term populations being short lived in the plasma.
Resumo:
In this work we explore the validity of employing a modified version of the nonrelativistic structure code civ3 for heavy, highly charged systems, using Na-like tungsten as a simple benchmark. Consequently, we present radiative and subsequent collisional atomic data compared with corresponding results from a fully relativistic structure and collisional model. Our motivation for this line of study is to benchmark civ3 against the relativistic grasp0 structure code. This is an important study as civ3 wave functions in nonrelativistic R-matrix calculations are computationally less expensive than their Dirac counterparts. There are very few existing data for the W LXIV ion in the literature with which we can compare except for an incomplete set of energy levels available from the NIST database. The overall accuracy of the present results is thus determined by the comparison between the civ3 and grasp0 structure codes alongside collisional atomic data computed by the R-matrix Breit-Pauli and Dirac codes. It is found that the electron-impact collision strengths and effective collision strengths computed by these differing methods are in good general agreement for the majority of the transitions considered, across a broad range of electron temperatures.