93 resultados para Diameter-dependence
Resumo:
We present a comprehensive numerical study of the dynamics of an intense laser pulse as it propagates through an underdense plasma in two and three dimensions. By varying the background plasma density and the polarization of the laser beam, significant differences are found in terms of energy transport and dissipation, in agreement with recently reported experimental results. Below the threshold for relativistic self-focusing, the plasma and laser dynamics are observed to be substantially insensitive to the initial laser polarization, since laser transport is dominated by ponderomotive effects. Above this threshold, relativistic effects become important, and laser energy is dissipated either by plasma heating (p-polarization) or by trapping of electromagnetic energy into plasma cavities (s-polarization) or by a combination of both (circular polarization). Besides the fundamental interest of this study, the results presented are relevant to applications such as plasma-based accelerators, x-ray lasers, and fast-ignition inertial confinement fusion. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737151]
Resumo:
The dielectric properties of pharmaceutical powder-(paracetamol, aspirin, lactose, maize starch, adipic acid) solvent (water) mixtures were measured at 2,450 MHz at a range of moisture contents (0-1.0 kg kg(-1), dry basis) and temperatures (20-70 A degrees C). The dielectric constant (epsilon'), loss factor (epsilon aEuro(3)) and penetration depth (d (p)) were found to be dependent on frequency, moisture content, temperature and powder type. For powder-water mixtures, a linear increase in the dielectric properties with moisture content was observed, whilst the temperature dependence was of quadratic form. The penetration depth was also significantly affected by temperature and moisture content. Although, epsilon aEuro(3) also increased with increasing temperature, variation with moisture content was temperature dependent. This information on dielectric properties is essential for mathematical description of the pharmaceutical product temperature history during microwave heating and for the design of microwave drying equipment.
Resumo:
We report on a temperature dependence of the frequency of all the major peaks in the Raman spectra of carbon nanotubes, using different excitation laser powers at the sample. The frequency decreases with increasing temperature for all peaks, and the shifts in Raman frequencies are linear in the temperature of the sample. In comparison, a similar dependence is found in active carbon, but no shift is observed for the highly ordered pyrolytic graphite within the same range of variation in laser power. A lowering of frequency at higher temperature implies an increase in the carbon-carbon distance at higher temperature. The relatively strong temperature dependence in carbon nanotubes and active carbon may be due to the enhanced increase in carbon-carbon distance. This enhancement may originate from the heavy defects and disorder in these materials. (C) 1998 American Institute of Physics. [S0021-8979(98)05219-0].
Resumo:
We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.
Resumo:
Three studies tested the conditions under which people judge utilitarian harm to be authority dependent (i.e., whether its right or wrongness depends on the ruling of an authority). In Study 1, participants judged the right or wrongness of physical abuse when used as an interrogation method anticipated to yield useful information for preventing future terrorist attacks. The ruling of the military authority towards the harm was manipulated (prohibited vs. prescribed) and found to significantly influence judgments of the right or wrongness of inflicting harm. Study 2 established a boundary condition with regards to the influence of authority, which was eliminated when the utility of the harm was definitely obtained rather than forecasted. Finally, Study 3 replicated the findings of Studies 1-2 in a completely different context—an expert committee’s ruling about the harming of chimpanzees for biomedical research. These results are discussed as they inform ongoing debates regarding the role of authority in moderating judgments of complex and simple harm. 2013 Elsevier B.V. © All rights reserved.
Resumo:
Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.
Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.
Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.
Resumo:
Purpose: To investigate the role of γ-aminobutryic acid (GABA) in the regulation of arteriolar diameter in the rat retina.
Methods.: The actions of GABA on arteriolar diameter were examined using ex vivo retinal whole-mount preparations and isolated vessel segments. In most experiments, arterioles were partially preconstricted with endothelin (Et)-1. The expression levels of GABAA and GABAB receptors on isolated rat retinal Müller cells were assessed by immunohistochemistry.
Results.: GABA (0.1–1 mM) evoked vasodilation or vasoconstriction of arterioles in whole-mount preparations. No such effects were observed with isolated vessel segments. In whole mount samples, the GABAA receptor agonist muscimol caused vasomotor responses in only a small proportion of vessels. In contrast, arteriolar responses to the GABAB receptor agonists baclofen and SKF97541 more closely resembled those observed with GABA. No responses were seen with the GABAC receptor agonist 5-methylimidazoleacetic acid. GABA-induced vasodilator responses were, for the most part, repeatable in the presence of the GABAA receptor antagonist bicuculline. These responses, however, were completely blocked in the presence of the GABAB receptor inhibitor 2-hydroxysaclofen. Strong immunolabeling for both GABAA and GABAB receptors was detected in isolated Müller cells. In the absence of Et-1–induced preconstriction, most vessels were unresponsive to bicuculline or 2-hydroxysaclofen.
Conclusions.: GABA exerts complex effects on arteriolar diameter in the rat retina. These actions appear largely dependent upon the activation of GABAB receptors in the retinal neuropile, possibly those located on perivascular Müller cells. Despite these findings, endogenous GABA appears to contribute little to the regulation of basal arteriolar diameter in the rat retina.
Resumo:
The behaviour of syntactic foam is strongly dependent on temperature and strain rate. This research focuses on the behaviour of syntactic foam made of epoxy and glass microballoons in the glassy, transition and rubbery regions. Both epoxy and epoxy foam are investigated separately under tension and shear loadings in order to study the strain rate and temperature effects. The results indicate that the strength and strain to failure data can be collapsed onto master curves depending on temperature reduced strain rate. The highest strain to failure occurs in the transition zone. The presence of glass microballoons reduces the strain to failure over the entire range considered, an effect that is particularly significant under tensile loading. However, as the microballoons increase the elastic modulus significantly in the rubbery zone but reduce it somewhat in the glassy zone, the effect on the strength is more complicated. Different failure mechanisms are identified over the temperature-frequency range considered. As the temperature reduced strain rate is decreased, the failure mechanism changes from microballoon fracture to matrix fracture and debonding between the matrix and microballoons. © IMechE 2012.
Resumo:
Purpose: To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Methods: Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacological agents inhibiting Ca2+ sparks and oscillations and K+ channels. Subcellular Ca2+ signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Results: AA dilated pressurised retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. AA-induced dilation was associated with an inhibition of subcellular Ca2+ signals. Interventions known to block Ca2+ sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. AA accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous BK currents, but only at positive membrane potentials. Pharmacological inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. AA suppressed L-type Ca2+ currents. Conclusions: These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca2+ signalling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca2+ channel activity. AA actions on K+ currents are inconsistent with a model in which K+ channels contribute to the vasodilator effects of AA.
Resumo:
Two models that can predict the voltage-dependent scattering from liquid crystal (LC)-based reflectarray cells are presented. The validity of both numerical techniques is demonstrated using measured results in the frequency range 94-110 GHz. The most rigorous approach models, for each voltage, the inhomogeneous and anisotropic permittivity of the LC as a stratified media in the direction of the biasing field. This accounts for the different tilt angles of the LC molecules inside the cell calculated from the solution of the elastic problem. The other model is based on an effective homogeneous permittivity tensor that corresponds to the average tilt angle along the longitudinal direction for each biasing voltage. In this model, convergence problems associated with the longitudinal inhomogeneity are avoided, and the computation efficiency is improved. Both models provide a correspondence between the reflection coefficient (losses and phase-shift) of the LC-based reflectarray cell and the value of biasing voltage, which can be used to design beam scanning reflectarrays. The accuracy and the efficiency of both models are also analyzed and discussed.
Resumo:
The objective of this work is an evaluation of quantitative measurements of piezoresponse force microscopy for nanoscale characterization of ferroelectric films. To this end, we investigate how the piezoresponse phase difference Delta Phi between c domains depends on the frequency omega of the applied ac field much lower than the cantilever first resonance frequency. The main specimen under study was a 102 nm thick film of Pb(Zr(0.2)Ti(0.8))O(3). For the sake of comparison, a 100 nm thick PbTiO(3) film was also used. From our measurements, we conclude a frequency dependent behavior Delta Phi similar to omega(-1), which can only be partially explained by the presence of adsorbates on the surface. (C) 2008 American Institute of Physics.