66 resultados para Detection sensitivity
Resumo:
BACKGROUND: Detection of pre-neoplastic gastric mucosal changes and early gastric cancer (EGC) by white-light endoscopy (WLE) is often difficult. In this study we investigated whether combined autofluorescence imaging (AFI) and narrow band imaging (NBI) can improve detection of pre-neoplastic lesions and early gastric cancer in high-risk patients.
PATIENTS AND METHODS: Chinese patients who were 50-years-old or above with dyspepsia were examined by both high-resolution WLE and combined AFI followed by NBI (AFI-NBI), consecutively in a prospective randomized cross-over setting, by two experienced endoscopists. The primary outcome was diagnostic ability of the two methods for patients with pre-neoplastic lesions such as intestinal metaplasia (IM) and mucosal atrophy.
RESULTS: Sixty-five patients were recruited. One patient with large advanced gastric cancer was found and excluded from the analysis. Among the remaining 64 patients, 38 (59%) had IM; of these, 26 (68%) were correctly identified by AFI-NBI (sensitivity 68%, specificity 23%) and only 13 (34%) by WLE (sensitivity 34%, specificity 65%). AFI-NBI detected more patients with IM than did WLE (p=0.011). Thirty-one patients (48%) had mucosal atrophy. Ten patients (32%) were identified by AFI-NBI (sensitivity 32%, specificity 79%) and four patients (13%) by WLE (sensitivity 13%, specificity 88%) (p=0.100). No dysplasia or EGC was found.
CONCLUSION: AFI-NBI identified significantly more patients with IM than did WLE. Our result warrants further studies to define the role of combined AFI-NBI endoscopy for detection of precancerous conditions.
Resumo:
Here we demonstrate a novel homogeneous one-step immunoassay, utilizing a pair of recombinant antibody antigen-binding fragments (Fab), that is specific for HT-2 toxin and has a positive readout. Advantages over the conventional competitive immunoassay formats such as enzyme-linked immunosorbent assay (ELISA) are the specificity, speed, and simplicity of the assay. Recombinant antibody HT2-10 Fab recognizing both HT-2 and T-2 toxins was developed from a phage display antibody library containing 6 × 10(7) different antibody clones. Specificity of the immunoassay was introduced by an anti-immune complex (IC) antibody binding the primary antibody-HT-2 toxin complex. When the noncompetitive immune complex assay was compared to the traditional competitive assay, an over 10-fold improvement in sensitivity was observed. Although the HT2-10 antibody has 100% cross-reactivity for HT-2 and T-2 toxins, the immune complex assay is highly specific for HT-2 alone. The assay performance with real samples was evaluated using naturally contaminated wheat reference material. The half-maximal effective concentration (EC50) value of the time-resolved fluorescence resonance energy transfer (TR-FRET) assay was 9.6 ng/mL, and the limit of detection (LOD) was 0.38 ng/mL (19 μg/kg). The labeled antibodies can be predried to the assay vials, e.g., microtiter plate wells, and readout is ready in 10 min after the sample application.
Resumo:
A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.
Resumo:
The cobas® (Roche) portfolio of companion diagnostics in oncology currently has three assays CE-marked for in vitro diagnostics. Two of these (EGFR and BRAF) are also US FDA-approved. These assays detect clinically relevant mutations that are correlated with response (BRAF, EGFR) or lack of response (KRAS) to targeted therapies such as selective mutant BRAF inhibitors in malignant melanoma, tyrosine kinases inhibitor in non-small cell lung cancer and anti-EGFR monoclonal antibodies in colorectal cancer, respectively. All these assays are run on a single platform using DNA extracted from a single 5 µm section of a formalin-fixed paraffin-embedded tissue block. The assays provide an ‘end-to-end’ solution from extraction of DNA to automated analysis and report on the cobas z 480. The cobas tests have shown robust and reproducible performance, with high sensitivity and specificity and low limit of detection, making them suitable as companion diagnostics for clinical use.
Resumo:
The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.