196 resultados para Density Functional Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO oxidation on Pt(111) is studied with ab initio density functional theory. The low energy pathway and transition state for the reaction are identified. The key event is the breaking of an O-metal bond prior to the formation of a chemisorbed CO2 molecule. The pathway can be rationalized in terms of competition of the O and C atoms for bonding with the underlying surface, and the predominant energetic barrier is the strength of the O-metal bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio total energy calculations have been performed for CO chemisorption on Pd(110). Local density approximation (LDA) calculations yield chemisorption energies which are significantly higher than experimental values but inclusion of the generalised gradient approximation (GGA) gives better agreement. In general, sites with higher coordination of the adsorbate to surface atoms lead to a larger degree of overbinding with LDA, and give larger corrections with GGA. The reason is discussed using a first-order perturbation approximation. It is concluded that this may be a general failure of LDA for chemisorption energy calculations. This conclusion may be extended to many surface calculations, such as potential energy surfaces for diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The dehydrogenation of cyclohexanol to cyclohexanone is very important in the manufacture of nylon. Copper-based catalysts are the most popular catalysts for this reaction, and on these catalysts the reaction mechanism and active site are in debate. In order to elucidate the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts, density functional theory with dispersion corrections were performed on up to six facets of copper in two different oxidation states: monovalent copper and metallic copper. By calculating the surface energies of these facets, Cu(111) and Cu2O(111) were found to be the most stable facets for metallic copper and for monovalent copper, respectively. On these two facets, all the possible elementary steps in the dehydrogenation pathway of cyclohexanol were calculated, including the adsorption, dehydrogenation, hydrogen coupling and desorption. Two different reaction pathways for dehydrogenation were considered on both surfaces. It was revealed that the dehydrogenation mechanisms are different on these two surfaces: on Cu(111) the hydrogen belonging to the hydroxyl is removed first, then the hydrogen belonging to the carbon is subtracted, while on Cu2O(111) the hydrogen belonging to the carbon is removed followed by the subtraction of the hydrogen in the hydroxyl group. Furthermore, by comparing the energy profiles of these two surfaces, Cu2O(111) was found to be more active for cyclohexanol dehydrogenation than Cu(111). In addition, we found that the coordinatively unsaturated copper sites on Cu2O(111) are the reaction sites for all the steps. Therefore, the coordinatively unsaturated copper site on Cu2O(111) is likely to be the active site for cyclohexanol dehydrogenation on the copper-based catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous catalysis is of great importance both industrially and academically. Rational design of heterogeneous catalysts is highly desirable, and the computational screening and design method is one of the most promising approaches for rational design of heterogeneous catalysts. Herein, we review some attempts towards the rational catalyst design using density functional theory from our group. Some general relationships and theories on the activity and selectivity are covered, such as the Brønsted–Evans–Polanyi relation, volcano curves/surfaces, chemical potentials, optimal adsorption energy window and energy descriptor of selectivity. Furthermore, the relations of these relationships and theories to the rational design are discussed, and some examples of computational screening and design method are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal exchanged CHA-type (SAPO-34 and SSZ-13) zeolites are promising catalysts for selective catalytic reduction (SCR) of NOx by NH3. However, the understanding of the process at the molecular level is still limited, which hinders the identification of its mechanism and the design of more efficient zeolite catalysts. In this work, modelling the reaction over Cu-SAPO-34, a periodic density functional theory (DFT) study of NH3-SCR was performed using hybrid functional with the consideration of van der Waals (vdW) interactions. A mechanism with a low N–N coupling barrier is proposed to account for the activation of NO. The redox cycle of Cu2+ and Cu+, which is crucial for the SCR process, is identified with detailed analyses. Besides, the decomposition of NH2NO is shown to readily occur on the Brønsted acid site by a hydrogen push-pull mechanism, confirming the collective efforts of Brønsted acid and Lewis acid (Cu2+) sites. The special electronic and structural properties of Cu-SAPO-34 are demonstrated to play an essential role the reaction, which may have a general implication on the understanding of zeolite catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the presence of a (time-dependent) macroscopic electric field the electron dynamics of dielectrics cannot be described by the time-dependent density only. We present a real-time formalism that has the density and the macroscopic polarization P as key quantities. We show that a simple local function of P already captures long-range correlation in linear and nonlinear optical response functions. Specifically, after detailing the numerical implementation, we examine the optical absorption, the second- and third-harmonic generation of bulk Si, GaAs, AlAs and CdTe at different level of approximation. We highlight links with ultranonlocal exchange-correlation functional approximations proposed within linear response time-dependent density functional theory framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by approximate to 7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Popolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields. (C) 2011 American Institute of Physics. [doi:10.1063/1.3652897]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the structural and electronic properties of p-coumaric acid, the chromophore of the photoactive yellow protein (PYP), by means of first-principles molecular dynamics based on density functional theory (DFT). We have studied the chromophore both in the vacuum and in an extended model which includes the nearest residues in the binding pocket of PYP, as derived from crystallographic data. We have characterized the ground state of the isolated chromophore in its protonated and deprotonated forms and computed the energy barrier involved in the trans to cis isomerization process around the carbon-carbon double bond. A comparison of the optimized structures of the chromophore in the vacuum and in the extended protein model, both in the trans (ground state of PYP in the dark) and cis (first light-activated intermediate) configuration, shows how the protein environment affects the chromophore in the first step of the photocycle. Our model gives an energy storage of 25 kcal/mol associated with the trans-to-cia photoisomerization. Finally, we have elucidated the nature of the electronic excitation relevant for the photochemistry of PYP by means of time-dependent DFT calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C-2 + C-2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadiene formation on Pd-based catalysts are also investigated and compared with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of C atoms on the α-Fe2O3 (001) surface was studied based on density function theory (DFT), in which the exchange-correlation potential was chosen as the PBE (Perdew, Burke and Ernzerhof) generalized gradient approximation (GGA) with a plane wave basis set. Upon the optimization on different adsorption sites with coverage of 1/20 and 1/5 ML, it was found that the adsorption of C atoms on the α-Fe 2O3 (001) surface was chemical adsorption. The coverage can affect the adsorption behavior greatly. Under low coverage, the most stable adsorption geometry lied on the bridged site with the adsorption energy of about 3.22 eV; however, under high coverage, it located at the top site with the energy change of 8.79 eV. Strong chemical reaction has occurred between the C and O atoms at this site. The density of states and population analysis showed that the s, p orbitals of C and p orbital of O give the most contribution to the adsorption bonding. During the adsorption process, O atom shares the electrons with C, and C can only affect the outermost and subsurface layers of α-Fe2O3; the third layer can not be affected obviously. Copyright © 2008 Chinese Journal of Structural Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arguments are given that lead to a formalism for calculating near K-edge structure in electron energy loss spectroscopy (EELS). This is essentially a one electron picture, while many body effects may be introduced at different levels, such as the local density approximation to density functional theory or the GW approximation to the electron self-energy. Calculations are made within the all electron LMTO scheme in crystals with complex atomic and electronic structures, and these are compared with experiment. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.