104 resultados para DRUG-RESISTANCE
Resumo:
BACKGROUND: Burkholderia pseudomallei is an important cause of acute fulminant pneumonia and septicaemia in tropical regions of northern Australia and south east Asia. Subacute and chronic forms of the disease also occur. There have been three recent reports of adults with cystic fibrosis (CF) who presumably acquired B pseudomallei infection during extended vacations or residence in either Thailand or northern Australia.
METHODS: The clinical course, molecular characteristics, serology and response to treatment are described in four adult CF patients infected with B pseudomallei. Polymerase chain reaction (PCR) based methods were used to confirm B pseudomallei and exclude B cepacia complex. Genotyping was performed using randomly amplified polymorphic DNA (RAPD) PCR and pulsed field gel electrophoresis (PFGE).
RESULTS: Four patients are described with a mean duration of infection of 32 months. All but one patient lived in tropical Queensland. Two patients (with the longest duration of infection) deteriorated clinically and one subsequently died of respiratory failure. Both responded to intravenous treatment specifically targeting B pseudomallei. Another patient suffered two severe episodes of acute bronchopneumonia following acquisition of B pseudomallei. Eradication of the organism was not possible in any of the cases. PFGE of a sample isolate from each patient revealed the strains to be unique and RAPD analysis showed retention of the same strain within an individual over time.
CONCLUSIONS: These findings support a potential pathogenic role for B pseudomallei in CF lung disease, producing both chronic infection and possibly acute bronchopneumonia. Identical isolates are retained over time and are unique, consistent with likely environmental acquisition and not person to person spread. B pseudomallei is emerging as a significant pathogen for patients with CF residing and holidaying in the tropics.
Resumo:
Analysis of colorectal carcinoma (CRC) tissue for KRAS codon 12 or 13 mutations to guide use of anti-epidermal growth factor receptor (EGFR) therapy is now considered mandatory in the UK. The scope of this practice has been recently extended because of data indicating that NRAS mutations and additional KRAS mutations also predict for poor response to anti-EGFR therapy. The following document provides guidance on RAS (i.e., KRAS and NRAS) testing of CRC tissue in the setting of personalised medicine within the UK and particularly within the NHS. This guidance covers issues related to case selection, preanalytical aspects, analysis and interpretation of such RAS testing.
Resumo:
AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.
RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.
INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.
Resumo:
Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).
Resumo:
Paclitaxel is a microtubule inhibitory chemotherapeutic drug that is increasingly used for the treatment of solid tumours. In vitro studies have demonstrated that attenuating the spindle assemble checkpoint (SAC) alters the post-mitotic responses to paclitaxel. Furthermore, the aberrant expression of a number of the SAC proteins, MAD2, BUBR1, and Aurora A kinase, are associated with poor patient prognosis. We have identified a microRNA, miR-433, that regulates the expression of MAD2. Overexpression of miR-433 in Hela cells induced downregulation of MAD2 mRNA and protein expression. We have also shown that Hela cells overexpressing miR-433 and treated with paclitaxel are no longer capable of cyclin B stabilisation, and thus have lost the ability to activate the SAC in response to paclitaxel. In addition, cell viability assays showed that Hela cells overexpressing miR-433 and treated with paclitaxel have an attenuated response to paclitaxel compared with microRNA scrambled controls. We have characterised the levels of miR-433, MAD2 gene expression and MAD2 protein levels in a cohort of ovarian cancer cell lines. Cell viability assays on this cohort revealed that responsiveness to paclitaxel is associated with high MAD2 protein expression and lower miR-433 expression. We hypothesise that the expression of miR-433 when deregulated in cancer leads to altered MAD2 expression and a compromised SAC, a key feature underlying drug resistance to paclitaxel. In a pilot study of paired human breast tumour and normal breast tissue samples we have shown that expression levels of miR-433 are elevated in cancer tissue. Targeting this microRNA in cancer may improve the efficacy of paclitaxel in treating breast cancer and ovarian cancer.
Resumo:
Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.
Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.
Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.
Setting: Critical care departments within NHS hospitals in the north-west of England.
Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation.
Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.
Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.
Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.
Resumo:
OBJECTIVE: The efficacy of docetaxel has recently been shown to be increased under hypoxic conditions through the down-regulation of hypoxia-inducible-factor 1α (HIF1A). Overexpression of the hypoxia-responsive gene class III β-tubulin (TUBB3) has been associated with docetaxel resistance in a number of cancer models. We propose that administration of docetaxel to prostate patients has the potential to reduce the hypoxic response through HIF1A down-regulation and that TUBB3 down-regulation participates in sensitivity to docetaxel.
METHODS: The cytotoxic effect of docetaxel was determined in both 22Rv1 and DU145 prostate cancer cell lines and correlated with HIF1A expression levels under aerobic and hypoxic conditions. Hypoxia-induced chemoresistance was investigated in a pair of isogenic docetaxel-resistant PC3 cell lines. Basal and hypoxia-induced TUBB3 gene expression levels were determined and correlated with methylation status at the HIF1A binding site.
RESULTS: Prostate cancer cells were sensitive to docetaxel under both aerobic and hypoxic conditions. Hypoxic cytotoxicity of docetaxel was consistent with a reduction in detected HIF1A levels. Sensitivity correlated with reduced basal and hypoxia-induced HIF1A and TUBB3 expression levels. The TUBB3 HIF1A binding site was hypermethylated in prostate cell lines and tumor specimens, which may exclude transcription factor binding and induction of TUBB3 expression. However, acquired docetaxel resistance was not associated with TUBB3 overexpression.
CONCLUSION: These data suggest that the hypoxic nature of a tumor may have relevance as regard to their response to docetaxel. Further investigation into the nature of this relationship may allow identification of novel targets to improve tumor control in prostate cancer patients.
Resumo:
The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.
Resumo:
Low-dose hyper-radiosensitivity (HRS) is the phenomenon whereby cells exposed to radiation doses of less than approximately 0.5 Gy exhibit increased cell killing relative to that predicted from back-extrapolating high-dose survival data using a linear-quadratic model. While the exact mechanism remains to be elucidated, the involvement of several molecular repair pathways has been documented. These processes in turn are also associated with the response of cells to O6-methylguanine (O6MeG) lesions. We propose a model in which the level of low-dose cell killing is determined by the efficiency of both pre-replicative repair by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT) and post-replicative repair by the DNA mismatch repair (MMR) system. We therefore hypothesized that the response of cells to low doses of radiation is dependent on the expression status of MGMT and MMR proteins. MMR (MSH2, MSH6, MLH1, PMS1, PMS2) and MGMT protein expression signatures were determined in a panel of normal (PWR1E, RWPE1) and malignant (22RV1, DU145, PC3) prostate cell lines and correlated with clonogenic survival and cell cycle analysis. PC3 and RWPE1 cells (HRS positive) were associated with MGMT and MMR proficiency, whereas HRS negative cell lines lacked expression of at least one (MGMT or MMR) protein. MGMT inactivation had no significant effect on cell survival. These results indicate a possible role for MMR-dependent processing of damage produced by low doses of radiation.
Resumo:
Intrinsic or acquired resistance to chemotherapy is a major clinical problem that has evoked the need to develop innovative approaches to predict and ultimately reverse drug resistance. A prolonged G(2)M arrest has been associated with apoptotic resistance to various microtubule-targeting agents (MTAs). In this study, we describe the functional significance of the mitotic spindle checkpoint proteins, BubR1 and Bub3, in maintaining a mitotic arrest after microtubule disruption by nocodazole and a novel series of MTAs, the pyrrolo-1,5-benzoxazepines (PBOXs), in human cancer cells. Cells expressing high levels of BubR1 and Bub3 (K562, MDA-MB-231, and HeLa) display a prolonged G(2)M arrest after exposure to MTAs. On the other hand, cells with low endogenous levels of mitotic spindle checkpoint proteins (SK-BR-3 and HL-60) transiently arrest in mitosis and undergo increased apoptosis. The phosphorylation of BubR1 correlated with PBOX-induced G(2)M arrest in four cell lines tested, indicating an active mitotic spindle checkpoint. Gene silencing of BubR1 by small interfering RNA interference reduced PBOX-induced G(2)M arrest without enhancing apoptotic efficacy. Further analysis demonstrated that PBOX-treated BubR1-depleted cells were both mononucleated and multinucleated with a polyploid DNA content, suggesting a requirement for BubR1 in cytokinesis. Taken together, these results suggest that BubR1 contributes to the mitotic checkpoint induced by the PBOXs.
Resumo:
Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either drug alone (P < 0.01). Cell cycle analysis of propidium iodide-stained cells showed that STI-571 significantly reduced PBOX-6-induced G2M arrest and polyploid formation with a concomitant increase in apoptosis. Similar results were obtained in K562 CML cells using lead MTAs (paclitaxel and nocodazole) in combination with STI-571. Potentiation of PBOX-6-induced apoptosis by STI-571 was specific to Bcr-Abl-positive leukemia cells with no cytoxic effects observed on normal peripheral blood cells. The combined treatment of STI-571 and PBOX-6 was associated with the down-regulation of Bcr-Abl and repression of proteins involved in Bcr-Abl transformation, namely the antiapoptotic proteins Bcl-x(L) and Mcl-1. Importantly, PBOX-6/STI-571 combinations were also effective in STI-571-resistant cells. Together, these findings highlight the potential clinical benefits in simultaneously targeting the microtubules and the Bcr-Abl oncoprotein in STI-571-sensitive and -resistant CML cells.
Resumo:
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Resumo:
Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.
Resumo:
Tumour hypoxia is progressively emerging as a common feature of prostate tumours associated with poor prognosis. While the molecular basis of disease progression is increasingly well documented, the potential role of hypoxia in these processes remains poorly evaluated. By dissecting the impact of hypoxia-inducible factor 1 alpha on molecular responses, this review provides evidence for a powerful protecting role of oxygen deprivation against oxidative stress injury, androgen deprivation, chemotherapeutic and radiation cytotoxicity. We propose hypoxia as a potent tumour-induced shield against destruction and suggest its targeting may need to be routinely addressed in the management of prostate cancer.
Resumo:
Expression of the transforming oncogene bcr-abl in chronic myelogenous leukemia (CML) cells is reported to confer resistance against apoptosis induced by many chemotherapeutic agents such as etoposide, ara-C, and staurosporine. In the present study some members of a series of novel pyrrolo-1,5-benzoxazepines potently induce apoptosis, as shown by cell shrinkage, chromatin condensation, DNA fragmentation, and poly(ADP-ribose) polymerase (PARP) cleavage, in three CML cell lines, K562, KYO.1, and LAMA 84. Induction of apoptosis by a representative member of this series, PBOX-6, was not accompanied by either the down-regulation of Bcr-Abl or by the attenuation of its protein tyrosine kinase activity up to 24 h after treatment, when approximately 50% of the cells had undergone apoptosis. These results suggest that down-regulation of Bcr-Abl is not part of the upstream apoptotic death program activated by PBOX-6. By characterizing the mechanism in which this novel agent executes apoptosis, this study has revealed that PBOX-6 caused activation of caspase 3-like proteases in only two of the three CML cell lines. In addition, inhibition of caspase 3-like protease activity using the inhibitor z-DEVD-fmk blocked caspase 3-like protease activity but did not prevent the induction of apoptosis, suggesting that caspase 3-like proteases are not essential in the mechanism by which PBOX-6 induces apoptosis in CML cells. In conclusion, this study demonstrates that PBOX-6 can bypass Bcr-Abl-mediated suppression of apoptosis, suggesting an important potential use of these compounds in the treatment of CML.