230 resultados para DOUBLE DISTILLATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine non-nematode-derived double-stranded RNAs (dsRNAs), designed for use as controls in RNA interference (RNAi) screens of neuropeptide targets, were found to induce aberrant phenotypes and an unexpected inhibitory effect on motility of root knot nematode Meloidogyne incognita J2s following 24 h soaks in 0.1 mg/ml dsRNA; a simple soaking procedure which we have found to elicit profound knockdown of neuronal targets in Globodera pallida J2s. We have established that this inhibitory phenomenon is both time- and concentration-dependent, as shorter 4 h soaks in 0.1 mg/ml dsRNA had no negative impact on M. incognita J2 stage worms, yet a 10-fold increase in concentration to 1 mg/ml for the same 4 h time period had an even greater qualitative and quantitative impact on worm phenotype and motility. Further, a 10-fold increase of J2s soaked in 0.1 mg/ml dsRNA did not significantly alter the observed phenotypic aberration, which suggests that dsRNA uptake of the soaked J2s is not saturated under these conditions. This phenomenon was not initially observed in potato cyst nematode G. pallida J2s, which displayed no aberrant phenotype, or diminution of migratory activity in response to the same 0.1 mg/ml dsRNA 24 h soaks. However, a 10-fold increase in dsRNA to 1 mg/ml was found to elicit comparable irregularity of phenotype and inhibition of motility in G. pallida, to that initially observed in M. incognita following a 24 h soak in 0.1 mg/ml dsRNA. Again, a 10-fold increase in the number of G. pallida J2s soaked in the same volume of 1 mg/ml dsRNA preparation did not significantly affect the observed phenotypic deviation. We do not observe any global impact on transcript abundance in either M. incognita or G. pallida J2s following 0.1 mg/ml dsRNA soaks, as revealed by reverse transcriptase-PCR and quantitative PCR data. This study aims to raise awareness of a phenomenon which we observe consistently and which we believe signifies a more expansive deficiency in our knowledge and understanding of the variables inherent to RNAi-based investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in the theoretical understanding of non-sequential double-ionization of atoms is reviewed from its beginnings with Kuchiev's work in the late 1980s and Corkum's work in the early 1990s to the present day. The crucial role of laboratory experiment as a persistent stimulus to theoretical endeavour is underlined but the predictive roles of simple, yet fundamental, theory and also of a full quantum mechanical description are not forgotten. A theoretical forward look is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new method which allows sequential and non-sequential double-ionization rates in laser-driven helium to be distinguished and calculated separately. The method is applied to calculate such rates for two laser pulses, one of 0.236 au frequency and 8.0 × 1015 W cm-2 peak intensity, the other of 1.0 au frequency and also of 8.0 × 1015 W cm-2 peak intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new ammonium iodomercurates(II), (NH4)(7)[HgI4](2)[Hg2I7](H2O) (1) and (NH4)(3)[Hg2I7] (2) contain isolated tetrahedra and vertex-sharing double tetrahedra as the anions. The crystal structures were determined from single-crystal X-ray diffraction data: 1: orthorhombic, Pnma (no. 62), a = 2175.9(2), b = 1781.8(2), c = 1256.2(2) pm, Z = 4. R-1 [I-0 > 2 sigma(I-0)] = 0.0520; 2: monoclinic, P2(1)/c (no. 14), a = 1259.0(2), b = 773.2(1), c = 2172.4(3) pm, beta = 101.18(2)degrees, Z = 4, R, [I-0 > 2 sigma(I-0)] = 0.0308.