63 resultados para DIFFERENCE TIME-DOMAIN
Resumo:
In this paper, we present a hybrid mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber loop. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Moreover, our proposed method outperforms the minimum mean-squared error design for a range of TEQ filter lengths.
Resumo:
Cryptographic algorithms have been designed to be computationally secure, however it has been shown that when they are implemented in hardware, that these devices leak side channel information that can be used to mount an attack that recovers the secret encryption key. In this paper an overlapping window power spectral density (PSD) side channel attack, targeting an FPGA device running the Advanced Encryption Standard is proposed. This improves upon previous research into PSD attacks by reducing the amount of pre-processing (effort) required. It is shown that the proposed overlapping window method requires less processing effort than that of using a sliding window approach, whilst overcoming the issues of sampling boundaries. The method is shown to be effective for both aligned and misaligned data sets and is therefore recommended as an improved approach in comparison with existing time domain based correlation attacks.
Resumo:
Side channel attacks permit the recovery of the secret key held within a cryptographic device. This paper presents a new EM attack in the frequency domain, using a power spectral density analysis that permits the use of variable spectral window widths for each trace of the data set and demonstrates how this attack can therefore overcome both inter-and intra-round random insertion type countermeasures. We also propose a novel re-alignment method exploiting the minimal power markers exhibited by electromagnetic emanations. The technique can be used for the extraction and re-alignment of round data in the time domain.