327 resultados para Crawford, Jamal


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An equation is presented for calculating the fairness of dynamically adaptive packet schedulers such as dynamic weighted fair queuing (DWFQ). The fairness of static packet schedulers such as weighted fair queue (WFQ) can be found using the widely accepted Worst-case Fair Index. The fairness of DWFQ can be measured using an Adapted Worst-case Fairness Index (AWFI). The AWFI enables a direct comparison of fairness properties of the DWFQ or other dynamically adaptive schedulers with static/non-adaptive schedulers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbazole moiety is a component of many important pharmaceuticals including anticancer and anti-HIV agents and is commonly utilized in the production of modern polymeric materials with novel photophysical and electronic properties. Simple carbazoles are generally produced via the aromatization of the respective tetrahydrocarbazole (THCZ). In this work, density functional theory calculations are used to model the reaction pathway of tetrahydrocarbazole aromatization over Pd(111). The geometry of each of the intermediate surface species has been determined and how each structure interacts with the metal surface addressed. The reaction energies and barriers of each of the elementary surface reactions have also been calculated, and a detailed analysis of the energetic trends performed. Our calculations have shown that the surface intermediates remain fixed to the surface via the aromatic ring in a manner similar to that of THCZ. Moreover, the aliphatic ring becomes progressively more planer with the dissociation of each subsequent hydrogen atom. Analysis of the reaction energy profile has revealed that the trend in reaction barriers is determined by the two factors: (i) the strength of the dissociating ring-H bond and (ii) the subsequent gain in energy due to the geometric relaxation of the aliphatic ring. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dehydrogenation of 1,2,3,4-tetrahydrocarbazole (THCZ) to form carbazole (CZ) over supported palladium catalysts was examined in the presence of hydrogen acceptors. As expected, liquid hydrogen acceptors increased the rate of reaction but, importantly, gaseous hydrogen acceptors also have been used. Ethene, propene, and but-1-ene showed up to a fivefold increase in the rate of dehydrogenation. Moreover, compared with the analogous liquid systems, the gaseous alternatives are a potentially more economic method of enhancing the activity and provide a simpler workup. The mechanism for the increase in rate was examined by density functional theory calculations, which showed that the propene hydrogenation competes effectively with the back-hydrogenation of the intermediates formed during the THCZ dehydrogenation, resulting in a shift in the equilibrium toward to the formation of CZ. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of a series of Au-based catalysts by Haruta et al. considerable progress has been made in understanding the active role of Au in CO oxidation catalysis. This review provides a summary of recent theoretical work performed in this field; in particular it addresses DFT studies of CO oxidation catalysis over free and supported gold nanoparticles. Several properties of the Au particles have been found to contribute to their unique catalytic activity. Of these properties, the low-coordination state of the Au atoms is arguably the most pertinent, although other properties of the Au cluster atoms, such as electronic charge, cannot be ignored. The current consensuses regarding the mechanism for CO oxidation over Au-based catalysts is also discussed. Finally, water-enhanced catalysis of CO oxidation on Au clusters is summarized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transition metal catalyzed bond formation is a fundamental process in catalysis and is of general interest throughout chemistry. To date, however, the knowledge of association reactions is rather limited, relative to what is known about dissociative processes. For example, surprisingly little is known about how the bond-forming ability of a metal, in general, varies across the Periodic Table. In particular, the effect of reactant valency on such trends is poorly understood. Herein, the authors examine these key issues by using density functional theory calculations to study CO and CN formations over the 4d metals. The calculations reveal that the chemistries differ in a fundamental way. In the case of CO formation, the reaction enthalpies span a much greater range than those of CN formation. Moreover, CO formation is found to be kinetically sensitive to the metal; here the reaction barriers (E-a) are found to be influenced by the reaction enthalpy. CN formation, conversely, is found to be relatively kinetically insensitive to the metal, and there is no correlation found between the reaction barriers and the reaction enthalpy. Analysis has shown that at the final adsorbed state, the interaction between N and the surface is relatively greater than that of O. Furthermore, in comparison with O, relatively less bonding between the surface and N is observed to be lost during transition state formation. These greater interactions between N and the surface, which can be related to the larger valency of N, are found to be responsible for the relatively smaller enthalpy range and limited variation in E-a for CN formation. (C) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density functional theory calculations are used to study the stability of molecularly adsorbed CO and CN over transition metal surfaces. The minimum energy reaction pathways, corresponding reaction barriers (E-a), and reaction enthalpies (Delta H) for the dissociation of CO and CN to atomic products over the 4d transition metals from Zr to Pd have been determined. CO is found to be the more stable adsorbate on the right hand side of the period (from Tc onwards), whereas CN is the more stable surface species on the early metals (Zr, Nb and Mo). A single linear relationship is found to exist that correlates the barriers of both reactions with their respective reaction enthalpies. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissociative adsorption of N-2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB; treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.