241 resultados para Contaminated
Resumo:
A bacterial bioassay, suitable for rapid screening to assess the relative toxicity of xenobiotic contaminated groundwater has been developed. The quantitative bioassay utilizes a decline in luminescence of the lux marked soil bacterium Pseudomonas fluorescens on exposure to contaminated groundwaters from which effective concentration (EC) values can be assessed and compared. P. fluorescens was most sensitive to semi-volatile organics in groundwaters but there was no correlation between EC value and chemical content. The sensitivity and reproducibility of the P. fluorescens bioassay was compared with that of Microtox and results showed that mean EC50 values for diluted ground water replicate samples were 20% and 18% respectively. This suggested that the P. fluorescens bioassay was as applicable to groundwater screening as the widely used Microtox bioassay.
Resumo:
We use conjoint choice questions to investigate people's tastes for cancer risk reductions and income in the context of public programs that would provide for remediation at abandoned industrial contaminated sites. Our survey was self-administered using the computer by persons living in the vicinity of an important contaminated site on the Italian National Priority List. The value of a prevented case of cancer is €2.6 million, but this figure does vary with income, perceived exposure to contaminants, and respondent opinions about priorities that should be pursued by cleanup programs. © 2011 Society for Risk Analysis.
Resumo:
Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg-1, with mean As concentration 64.44 mg kg-1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27-385.98 mg kg-1 dry weight), while the lowest was in unpolished rice (0.31-0.52 mg kg-1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root » soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg-1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.
Resumo:
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
Resumo:
This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.
Resumo:
Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg−1) and mineralisation (199.8 mg kg−1) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg−1) and granite (36.0 mg kg−1) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.
Resumo:
The use of semiconductor photocatalysis for treatment of water and air has been the topic of intense research activity over the past 20 years. This powerful process has also been extended to the disinfection of environments contaminated with pathogenic micro-organisms. This review summarizes recent developments concerned with the photocatalytic treatment of water contaminated with pathogenic micro-organisms presenting a potential hazard to animals and human beings.
Resumo:
Several agricultural fields show high contents of arsenic because of irrigation with arsenic- contaminated groundwater. Vegetables accumulate arse- nic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic en- demic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L−1) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumula- tion were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spec- trometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, suchas ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to im- prove food safety and also food security by increasing farmer’s revenue.
Resumo:
Azaspiracid (AZA) poisoning was unknown until 1995 when shellfish harvested in Ireland caused illness manifesting by vomiting and diarrhoea. Further in vivo/vitro studies showed neurotoxicity linked with AZA exposure. However, the biological target of the toxin which will help explain such potent neurological activity is still unknown. A region of Irish coastline was selected and shellfish were sampled and tested for AZA using mass spectrometry. An outbreak was identified in 2010 and samples collected before and after the contamination episode were compared for their metabolite profile using high resolution mass spectrometry. Twenty eight ions were identified at higher concentration in the contaminated samples. Stringent bioinformatic analysis revealed putative identifications for seven compounds including, glutarylcarnitine, a glutaric acid metabolite. Glutaric acid, the parent compound linked with human neurological manifestations was subjected to toxicological investigations but was found to have no specific effect on the sodium channel (as was the case with AZA). However in combination, glutaric acid (1mM) and azaspiracid (50nM) inhibited the activity of the sodium channel by over 50%. Glutaric acid was subsequently detected in all shellfish employed in the study. For the first time a viable mechanism for how AZA manifests itself as a toxin is presented.