120 resultados para Complementary computing
Resumo:
Wireless sensor node platforms are very diversified and very constrained, particularly in power consumption. When choosing or sizing a platform for a given application, it is necessary to be able to evaluate in an early design stage the impact of those choices. Applied to the computing platform implemented on the sensor node, it requires a good understanding of the workload it must perform. Nevertheless, this workload is highly application-dependent. It depends on the data sampling frequency together with application-specific data processing and management. It is thus necessary to have a model that can represent the workload of applications with various needs and characteristics. In this paper, we propose a workload model for wireless sensor node computing platforms. This model is based on a synthetic application that models the different computational tasks that the computing platform will perform to process sensor data. It allows to model the workload of various different applications by tuning data sampling rate and processing. A case study is performed by modeling different applications and by showing how it can be used for workload characterization. © 2011 IEEE.
Resumo:
A novel cost-effective and low-latency wormhole router for packet-switched NoC designs, tailored for FPGA, is presented. This has been designed to be scalable at system level to fully exploit the characteristics and constraints of FPGA based systems, rather than custom ASIC technology. A key feature is that it achieves a low packet propagation latency of only two cycles per hop including both router pipeline delay and link traversal delay - a significant enhancement over existing FPGA designs - whilst being very competitive in terms of performance and hardware complexity. It can also be configured in various network topologies including 1-D, 2-D, and 3-D. Detailed design-space exploration has been carried for a range of scaling parameters, with the results of various design trade-offs being presented and discussed. By taking advantage of abundant buildin reconfigurable logic and routing resources, we have been able to create a new scalable on-chip FPGA based router that exhibits high dimensionality and connectivity. The architecture proposed can be easily migrated across many FPGA families to provide flexible, robust and cost-effective NoC solutions suitable for the implementation of high-performance FPGA computing systems. © 2011 IEEE.