84 resultados para Colonic-mucosa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bladder mucosa consists of the urothelium, basement membrane, and lamina propria (LP). Although the urothelium has been given much attention, it may be regarded as one part of a signaling system involving another equally important component of the bladder mucosa, namely, the LP. The LP lies between the basement membrane of the mucosa and the detrusor muscle and is composed of an extracellular matrix containing several types of cells, including fibroblasts, adipocytes, interstitial cells, and afferent and efferent nerve endings. In addition, the LP contains a rich vascular network, lymphatic vessels, elastic fibers, and smooth muscle fascicles (muscularis mucosae). The roles of the LP and its components in bladder function have not been definitively established, though it has been suggested to be the capacitance layer of the bladder, determining bladder compliance and enabling adaptive changes to increasing volumes. However, the bladder LP may also serve as a communication center, with an important integrative role in signal transduction to the central nervous system (nociception, mechanosensation). The LP may also, by means of its different components, make it possible for the urothelium to transmit information to other components of the bladder wall, contributing to activation of the detrusor muscle. In addition, the LP may serve as a source for production of factors influencing the growth of both the overlying urothelium and the underlying detrusor muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathelicidin is an antimicrobial peptide (AMP) and signaling molecule in innate immunity and a direct target of 1,25-dihydroxyvitamin D3 (1,25D3) in primary human keratinocytes (NHEK). The expression of cathelicidin is dysregulated in various skin diseases and its regulation differs depending on the epithelial cell type. The secondary bile acid lithocholic acid (LCA) is a ligand of the vitamin D receptor (VDR) and can carry out in vivo functions of vitamin D3. Therefore we analyzed cathelicidin mRNA- and peptide expression levels in NHEK and colonic epithelial cells (Caco-2) after stimulation with LCA. We found increased expression of cathelicidin mRNA and peptide in NHEK, in Caco-2 colon cells no effect was observed after LCA stimulation. The VDR as well as MEK-ERK signaled the upregulation of cathelicidin in NHEK induced by LCA. Collectively, our data indicate that cathelicidin induction upon LCA treatment differs in keratinocytes and colonic epithelial cells. Based on these observations LCA-like molecules targeting cathelicidin could be designed for the treatment of cutaneous diseases that are characterized by disturbed cathelicidin expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.

Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.

Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.

Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide a structural and a functional analysis of this network and also connect its molecular interaction structure with the chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon cancer network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age-related oral changes are seen in the oral hard and soft tissues as well as in bone, the temporomandibular joints and the oral mucosa. As older patients retain their natural teeth for longer, the clinical picture consists of normal physiological age changes in combination with pathological and iatrogenic effects.

CLINICAL RELEVANCE: With an ageing population retaining more of its natural teeth for longer, dental professionals should expect to observe oral age changes more frequently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crohn's disease is a chronic inflammatory bowel disease of unknown aetiology. Mucosal inflammatory dysregulation is likely important, with increased production of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNFα). The chimeric monoclonal antibody, infliximab, inhibits TNFα and promotes intestinal mucosal healing. Despite this, many patients still require surgical intervention. Patients who have undergone colonic resection post-infliximab therapy, show markedly variable morphological response to treatment. FOXP3+ CD4+ regulatory T-cells have been shown to have a protective role in autoimmune/inflammatory diseases and their sequestration to the bowel is found in those treated with infliximab. We examined the immunohistochemical profile of lymphoid aggregates in tissue sections from post-infliximab Crohn's colitis resection specimens, classified as morphological responders or non-responders, defined in relation to the absence/presence of mucosal ulceration and active inflammation, and a control group. Results indicated no significant diffences in CD68-positive cell counts but increased FOXP3-positive (P = 0.02) and CD4-positive (P = 0.05) cell counts in responders versus non-responders. Untreated control scores were similar to non-responders. Although based on small study numbers, our results suggest an association between upregulation of FOXP3+/CD4+ regulatory T-cells and morphological response to infliximab therapy. This represents a possible quantitative methodology for monitoring therapeutic response to infliximab therapy, based on immunohistochemical evaluation of endoscopic biopsy specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marginal zone B-cell lymphomas (MZLs) have been divided into 3 distinct subtypes (extranodal MZLs of mucosa-associated lymphoid tissue [MALT] type, nodal MZLs, and splenic MZLs). Nevertheless, the relationship between the subtypes is still unclear. We performed a comprehensive analysis of genomic DNA copy number changes in a very large series of MZL cases with the aim of addressing this question. Samples from 218 MZL patients (25 nodal, 57 MALT, 134 splenic, and 2 not better specified MZLs) were analyzed with the Affymetrix Human Mapping 250K SNP arrays, and the data combined with matched gene expression in 33 of 218 cases. MALT lymphoma presented significantly more frequently gains at 3p, 6p, 18p, and del(6q23) (TNFAIP3/A20), whereas splenic MZLs was associated with del(7q31), del(8p). Nodal MZLs did not show statistically significant differences compared with MALT lymphoma while lacking the splenic MZLs-related 7q losses. Gains of 3q and 18q were common to all 3 subtypes. del(8p) was often present together with del(17p) (TP53). Although del(17p) did not determine a worse outcome and del(8p) was only of borderline significance, the presence of both deletions had a highly significant negative impact on the outcome of splenic MZLs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Heparin therapy may be effective in steroid resistant inflammatory bowel disease.

AIM: A randomized pilot study, to compare unfractionated heparin as a first-line therapy with corticosteroids in colonic inflammatory bowel disease.

METHODS: Twenty patients with severe inflammatory bowel disease (ulcerative colitis, n=17; Crohn's colitis, n=3) were randomized to either intravenous heparin for 5 days, followed by subcutaneous heparin for 5 weeks (n=8), or high-dose intravenous hydrocortisone for 5 days followed by oral prednisolone 40 mg daily, reducing by 5 mg per day each week (n=12). After 5 days, non-responders in each treatment group were commenced on combination therapy. Response to therapy was monitored by: clinical disease activity (ulcerative colitis: Truelove and Witt Index; Crohn's colitis: Harvey and Bradshaw Index), stool frequency, serum C-reactive protein and alpha1 acid glycoprotein, endoscopic and histopathological grading.

RESULTS: The response rates were similar in both treatment groups: clinical activity index (heparin vs. steroid; 75% vs. 67%; P=0.23), stool frequency (75% vs. 67%; P=0.61), endoscopic (75% vs. 67%; P=0.4) and histopathological grading (63% vs. 50%; P=0.67). Both treatments were well-tolerated with no serious adverse events.

CONCLUSION: Heparin as a first line therapy is as effective as corticosteroids in the treatment of colonic inflammatory bowel disease. Large multicentre randomized comparative studies are required to determine the role of heparin in the management of inflammatory bowel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer is the second most common cause of cancer-related death in the United States. Recent studies showed that interleukin-8 (IL-8) and its receptors (CXCR1 and CXCR2) are significantly upregulated in both the tumor and its microenvironment, and act as key regulators of proliferation, angiogenesis, and metastasis. Our previous study showed that IL-8 overexpression in colorectal cancer cells triggers the upregulation of the CXCR2-mediated proliferative pathway. The aim of this study was to investigate whether the CXCR2 antagonist, SCH-527123, inhibits colorectal cancer proliferation and if it can sensitize colorectal cancer cells to oxaliplatin both in vitro and in vivo. SCH-527123 showed concentration-dependent antiproliferative effects in HCT116, Caco2, and their respective IL-8-overexpressing variants colorectal cancer cell lines. Moreover, SCH-527123 was able to suppress CXCR2-mediated signal transduction as shown through decreased phosphorylation of the NF-κB/mitogen-activated protein kinase (MAPK)/AKT pathway. These findings corresponded with decreased cell migration and invasion, while increased apoptosis in colorectal cancer cell lines. In vivo results verified that SCH-527123 treatment decreased tumor growth and microvessel density when compared with vehicle-treated tumors. Importantly, these preclinical studies showed that the combination of SCH-527123 and oxaliplatin resulted in a greater decrease in cell proliferation, tumor growth, apoptosis, and angiogenesis that was superior to single-agent treatment. Taken together, these findings suggest that targeting CXCR2 may block tumor proliferation, migration, invasion, and angiogenesis. In addition, CXCR2 blockade may further sensitize colorectal cancer to oxaliplatin treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Colorectal cancer (CRC) is a leading cause of death in the United States. Increased level of interleukin-8 (IL-8) and CXCR2 on tumours and in the tumour microenvironment has been associated with CRC growth, progression and recurrence in patients. Here, we aimed to evaluate the effects of tissue microenvironment-encoded IL-8 and CXCR2 on colon cancer progression and metastasis.

METHODS: A novel immunodeficient, skin-specific IL-8-expressing transgenic model was generated to evaluate colon cancer growth and metastasis. Syngeneic mouse colon cancer cells were grafted in CXCR2 knockout (KO) mice to study the contribution of CXCR2 in the microenvironment to cancer growth.

RESULTS: Elevated levels of IL-8 in the serum and tumour microenvironment profoundly enhanced the growth of human and mouse colon cancer cells with increased peri-tumoural angiogenesis, and also promoted the extravasation of the cancer cells into the lung and liver. The tumour growth was inhibited in CXCR2 KO mice with significantly reduced tumour angiogenesis and increased tumour necrosis.

CONCLUSION: Increased expression of IL-8 in the tumour microenvironment enhanced colon cancer growth and metastasis. Moreover, the absence of its receptor CXCR2 in the tumour microenvironment prevented colon cancer cell growth. Together, our study demonstrates the critical roles of the tumour microenvironment-encoded IL-8/CXCR2 in colon cancer pathogenesis, validating the pathway as an important therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.

METHODS: HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity Pathway Analysis.

RESULTS: Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.

CONCLUSION: This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the human epidermal receptor (HER) family are frequently associated with aggressive disease and poor prognosis in multiple malignancies. Lapatinib is a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and HER-2. This study evaluated the therapeutic potential of lapatinib, alone and in combination with SN-38, the active metabolite of irinotecan (CPT-11), in colon and gastric cancer cell lines. Concentration-dependent antiproliferative effects of both lapatinib and SN-38 were observed in all colon and gastric cancer cell lines tested but varied significantly between individual cell lines (lapatinib range 0.08-11.7 muM; SN-38 range 3.6-256 nM). Lapatinib potently inhibited the growth of a HER-2 overexpressing gastric cancer cell line and demonstrated moderate activity in gastric and colon cancer cells with detectable HER-2 expression. The combination of lapatinib and SN-38 interacted synergistically to inhibit cell proliferation in all colon and gastric cancer cell lines tested. Cotreatment with lapatinib and SN-38 also resulted in enhanced cell cycle arrest and the induction of apoptosis with subsequent cellular pharmacokinetic analysis demonstrating that lapatinib promoted the increased intracellular accumulation and retention of SN-38 when compared to SN-38 treatment alone. Finally, the combination of lapatinib and CPT-11 demonstrated synergistic antitumor efficacy in the LoVo colon cancer mouse xenograft model with no apparent increase in toxicity compared to CPT-11 monotherapy. These results provide compelling preclinical rationale indicating lapatinib to be a potentially efficacious chemotherapeutic combination partner for irinotecan in the treatment of gastrointestinal carcinomas.