61 resultados para Cloud Fraction
Filtro por publicador
- JISC Information Environment Repository (21)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (64)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston University Digital Common (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (201)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (37)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Peer Publishing (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (69)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (10)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (48)
- Instituto Politécnico do Porto, Portugal (6)
- Ministerio de Cultura, Spain (1)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (61)
- Queensland University of Technology - ePrints Archive (87)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (73)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (1)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (5)
Resumo:
Scheduling jobs with deadlines, each of which defines the latest time that a job must be completed, can be challenging on the cloud due to incurred costs and unpredictable performance. This problem is further complicated when there is not enough information to effectively schedule a job such that its deadline is satisfied, and the cost is minimised. In this paper, we present an approach to schedule jobs, whose performance are unknown before execution, with deadlines on the cloud. By performing a sampling phase to collect the necessary information about those jobs, our approach delivers the scheduling decision within 10% cost and 16% violation rate when compared to the ideal setting, which has complete knowledge about each of the jobs from the beginning. It is noted that our proposed algorithm outperforms existing approaches, which use a fixed amount of resources by reducing the violation cost by at least two times.