212 resultados para Chronic myeloid leukemia
Resumo:
Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel microtubule depolymerization agent that induces cell cycle arrest and subsequent apoptosis in a number of cancer cell lines. Chronic lymphocytic leukemia (CLL) is characterized by clonal expansion of predominately nonproliferating mature B cells. Here, we present data suggesting PBOX-15 is a potential therapeutic agent for CLL. We show activity of PBOX-15 in samples taken from a cohort of CLL patients (n = 55) representing both high-risk and low-risk disease. PBOX-15 exhibited cytotoxicity in CLL cells (n = 19) in a dose-dependent manner, with mean IC(50) of 0.55 mu mol/L. PBOX-15 significantly induced apoptosis in CLL cells (n = 46) including cells with poor prognostic markers: unmutated IgV(II) genes, CD38 and zeta-associated protein 70 (ZAP-70) expression, and fludarabine-resistant cells with chromosomal deletions in 17p. In addition, PBOX-15 was more potent than fludarabine in inducing apoptosis in fludarabine-sensitive cells. Pharmacologic inhibition and small interfering RNA knockdown of caspase-8 significantly inhibited PBOX-15-induced apoptosis. Pharmacologic inhibition of c-jun NH(2)-terminal kinase inhibited PBOX-15-induced apoptosis in mutated IgV(II) and ZAP-70(-) CLL cells but not in unmutated IgV(II) and ZAP-70(+) cells. PBOX-15 exhibited selective cytotoxicity in CLL cells compared with normal hematopoietic cells. Our data suggest that PBOX-15 represents a novel class of agents that are toxic toward both high-risk and low-risk CLL cells. The need for novel treatments is acute in CLL, especially for the subgroup of patients with poor clinical outcome and drug-resistant disease. This study identifies a novel agent with significant clinical potential.
Resumo:
Better treatment is required for older patients with acute myeloid leukemia (AML) not considered fit for intensive chemotherapy. We report a randomized comparison of lowdose Ara-C (LDAC) vs the novel nucleoside, clofarabine, in untreated older patients with AML and high-risk myelodysplastic syndrome (MDS). A total of 406 patients with de novo (62%), secondary disease (24%), or high-risk MDS (>10% marrow blasts) (15%), median age 74 years, were randomized to LDAC 20 mg twice daily for 10 days every 6 weeks or clofarabine 20 mg/m2 on days 1 to 5, both for up to 4 courses. These patients had more adverse demographics than contemporaneous intensively treated patients. The overall remission rate was 28%, and 2-year survival was 13%. Clofarabine significantly improved complete remission (22% vs 12%; hazard ratio [HR] 5 0.47 [0.28-0.79]; P 5 .005) and overall response (38% vs 19%; HR 5 0.41 [0.26-0.62]; P < .0001), but there was no difference in overall survival, explained by poorer survival in the clofarabine patients who did not gain complete remission and also following relapse. Clofarabine was more myelosuppressive and required more supportive care. Although clofarabine doubled remission rates, overall survival was not improved overall or in any subgroup. The treatment of patients of the type treated here remains a major unmet need. This trial was registered at www.clinicaltrials.gov as #ISRCTN 11036523.
Resumo:
Solid organ transplant recipients have elevated cancer risks, owing in part to pharmacologic immunosuppression. However, little is known about risks for hematologic malignancies of myeloid origin. We linked the US Scientific Registry of Transplant Recipients with 15 population-based cancer registries to ascertain cancer occurrence among 207 859 solid organ transplants (1987–2009). Solid organ transplant recipients had a significantly elevated risk for myeloid neoplasms, with standardized incidence ratios (SIRs) of 4.6 (95% confidence interval 3.8–5.6; N=101) for myelodysplastic syndromes (MDS), 2.7 (2.2–3.2; N=125) for acute myeloid leukemia (AML), 2.3 (1.6–3.2; N=36) for chronic myeloid leukemia and 7.2 (5.4–9.3; N=57) for polycythemia vera. SIRs were highest among younger individuals and varied by time since transplantation and organ type (Poisson regression P<0.05 for all comparisons). Azathioprine for initial maintenance immunosuppression increased risk for MDS (P=0.0002) and AML (2–5 years after transplantation, P=0.0163). Overall survival following AML/MDS among transplant recipients was inferior to that of similar patients reported to US cancer registries (log-rank P<0.0001). Our novel finding of increased risks for specific myeloid neoplasms after solid organ transplantation supports a role for immune dysfunction in myeloid neoplasm etiology. The increased risks and inferior survival should heighten clinician awareness of myeloid neoplasms during follow-up of transplant recipients.
Resumo:
DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation.
Resumo:
The development of new treatments for older patients with acute myeloid leukemia is an active area, but has met with limited success. Vosaroxin, a quinolone-derived intercalating agent has several properties that could prove beneficial. Initial clinical studies showed it to be well-tolerated in older patients with relapsed/refractory disease. In vitro data suggested synergy with cytarabine (Ara-C). To evaluate vosaroxin, we performed 2 randomized comparisons within the "Pick a Winner" program. A total of 104 patients were randomized to vosaroxin vs low-dose Ara-C (LDAC) and 104 to vosaroxin + LDAC vs LDAC. When comparing vosaroxin with LDAC, neither response rate (complete recovery [CR]/complete recovery with incomplete count recovery [CRi], 26% vs 30%; odds ratio [OR], 1.16 (0.49-2.72); P = .7) nor 12-month survival (12% vs 31%; hazard ratio [HR], 1.94 [1.26-3.00]; P = .003) showed benefit for vosaroxin. Likewise, in the vosaroxin + LDAC vs LDAC comparison, neither response rate (CR/CRi, 38% vs 34%; OR, 0.83 [0.37-1.84]; P = .6) nor survival (33% vs 37%; HR, 1.30 [0.81-2.07]; P = .3) was improved. A major reason for this lack of benefit was excess early mortality in the vosaroxin + LDAC arm, most obviously in the second month following randomization. At its first interim analysis, the Data Monitoring and Ethics Committee recommended closure of the vosaroxin-containing trial arms because a clinically relevant benefit was unlikely.
Resumo:
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and codownregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Resumo:
Chronic lymphocytic leukemia (CLL) follows a variable clinical course which is difficult to predict at diagnosis. We assessed somatic mutation (SHM) status, CD38 and ZAP-70 expression in 87 patients (49 male, 38 female) with stage A CLL and known cytogenetic profile to compare their role in predicting disease progression, which was assessed by the treatment free interval (TFI) from diagnosis. Sixty (69%) patients were SHM+, 24 (28%) were CD38+ and ten (12%) were ZAP-70+. The median TFI for: (i) SHM + versus SHM- patients was 124 versus 26 months; hazard ratio (HR) = 3.6 [95% confidence interval (CI) = 1.8 - 7.3; P = 0.001]: (ii) CD38- versus CD38+ patients was 120 versus 34 months; HR = 2.4 (95% CI = 1.4 - 5.3; P = 0.02); and (iii) ZAP70- versus ZAP70+ was 120 versus 16 months; HR = 3.4 (95% CI = 1.4 - 8.7; P = 0.01). SHM status and CD38 retained prognostic significance on multivariate analysis whereas ZAP-70 did not. We conclude that ZAP-70 analysis does not provide additional prognostic information in this group of patients.
Resumo:
The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.
Resumo:
Expression of the transforming oncogene bcr-abl in chronic myelogenous leukemia (CML) cells is reported to confer resistance against apoptosis induced by many chemotherapeutic agents such as etoposide, ara-C, and staurosporine. In the present study some members of a series of novel pyrrolo-1,5-benzoxazepines potently induce apoptosis, as shown by cell shrinkage, chromatin condensation, DNA fragmentation, and poly(ADP-ribose) polymerase (PARP) cleavage, in three CML cell lines, K562, KYO.1, and LAMA 84. Induction of apoptosis by a representative member of this series, PBOX-6, was not accompanied by either the down-regulation of Bcr-Abl or by the attenuation of its protein tyrosine kinase activity up to 24 h after treatment, when approximately 50% of the cells had undergone apoptosis. These results suggest that down-regulation of Bcr-Abl is not part of the upstream apoptotic death program activated by PBOX-6. By characterizing the mechanism in which this novel agent executes apoptosis, this study has revealed that PBOX-6 caused activation of caspase 3-like proteases in only two of the three CML cell lines. In addition, inhibition of caspase 3-like protease activity using the inhibitor z-DEVD-fmk blocked caspase 3-like protease activity but did not prevent the induction of apoptosis, suggesting that caspase 3-like proteases are not essential in the mechanism by which PBOX-6 induces apoptosis in CML cells. In conclusion, this study demonstrates that PBOX-6 can bypass Bcr-Abl-mediated suppression of apoptosis, suggesting an important potential use of these compounds in the treatment of CML.
Resumo:
Allogeneic bone marrow transplantation has been shown to be a very effective therapy for Chronic Granulocytic Leukemia with long term disease free survivals in excess of 60%. Relapse rates remain low at 15% following histocompatible sibling transplants and lower rates following matched unrelated donor grafts. Relapse rates however, are higher if BMT is carried out in transformation or blast crisis. Leukemic relapse in donor cells following transplantation for CGL is a rare event. The occurrence of donor leukemia however, may be under reported as accurate and sensitive investigation of the origin of relapsed leukemia following BMT requires DNA based technologies. A possible mechanism of donor leukemia in CGL is transfection of donor cells with the chimeric gene which is unique to this disease. It is possible that the malignant cells found in transformed or blast crisis of CGL may have a greater potential to transfect donor haematopoietic material. Careful evaluation of the incidence of donor leukemia using molecular biology methods may elucidate the frequency of this event following BMT for CGL.
Resumo:
A case of chronic myeloid leukaemia diagnosed as an incidental finding in a 32-year-old woman, pregnant with twins at 11 weeks gestation, is presented. Management of the patient was with leucapheresis and supportive care until spontaneous delivery of two morphologically normal infants (one male, one female) at 37 weeks gestation. Special considerations while employing leucapheresis in pregnant patients are discussed.
Resumo:
Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.
Resumo:
BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.
METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.
RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.
CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.