67 resultados para Chromatographic fingerprint
Resumo:
In existing WiFi-based localization methods, smart mobile devices consume quite a lot of power as WiFi interfaces need to be used for frequent AP scanning during the localization process. In this work, we design an energy-efficient indoor localization system called ZigBee assisted indoor localization (ZIL) based on WiFi fingerprints via ZigBee interference signatures. ZIL uses ZigBee interfaces to collect mixed WiFi signals, which include non-periodic WiFi data and periodic beacon signals. However, WiFi APs cannot be identified from these WiFi signals by ZigBee interfaces directly. To address this issue, we propose a method for detecting WiFi APs to form WiFi fingerprints from the signals collected by ZigBee interfaces. We propose a novel fingerprint matching algorithm to align a pair of fingerprints effectively. To improve the localization accuracy, we design the K-nearest neighbor (KNN) method with three different weighted distances and find that the KNN algorithm with the Manhattan distance performs best. Experiments show that ZIL can achieve the localization accuracy of 87%, which is competitive compared to state-of-the-art WiFi fingerprint-based approaches, and save energy by 68% on average compared to the approach based on WiFi interface.
Resumo:
The new Food Information Regulation (1169/2011), dictates that in a refined vegetable oil blend, the type of oil must be clearly identified in the package in contract with current practice where is labelled under the generic and often misleading term “vegetable oil”. With increase consumer awareness in food authenticity, as shown in the recent food scandal with horsemeat in beef products, the identification of the origin of species in food products becomes increasingly relevant. Palm oil is used extensively in food manufacturing and as global demand increases, producing countries suffer from the aftermath of intensive agriculture. Even if only a small portion of global production, sustainable palm oil comes in great demand from consumers and industry. It is therefore of interest to detect the presence of palm oil in food products as consumers have the right to know if it is present in the product or not, mainly from an ethical point of view. Apart from palm oil and its derivatives, rapeseed oil and sunflower oil are also included. With DNA-based methods, the gold standard for the detection of food authenticity and species recognition deemed not suitable in this analytical problem, the focus is inevitably drawn to the chromatographic and spectroscopic methods. Both chromatographic (such as GC-FID and LC-MS) and spectroscopic methods (FT-IR, Raman, NIR) are relevant. Previous attempts have not shown promising results due to oils’ natural variation in composition and complex chemical signals but the suggested two-step analytical procedure is a promising approach with very good initial results.
Resumo:
Detection of adulteration of non-processed vegetable oil with lesser value seed oils (classic example is hazelnut in virgin olive oil) has been in the centre of scientific attention for many years and several chemical methods were proposed. The recent EC Regulation 1169/2011, however, introduces necessity for different analytical method in a more complicated matrix. From the end of 2014, food businesses required to declare the composition of the refined oil mixture in the food product label. This creates a gap since there is no analytical method currently available to perform such analysis. In the first phase the work focused on 100% oil blends of various oil species of palm oil (and derivatives), sunflower and rapeseed oil before expanding to foodstuffs. Chromatographic methods remain highly relevant although suffer from various limitations which derive from natural compositional variation. Modern multivariate techniques based on machine learning algorithms, however, when applied in FTIR, Raman spectroscopic data have a strong potential in tackling the problem.
Resumo:
Virgin olive oil is a high quality natural product obtained only by physical means. In addition to triacylglycerols it contains nutritionally important polar and non-polar antioxidant phenols and other bioactive ingredients. The polar fraction is a complex mixture of phenolic acids, simple phenols, derivatives of the glycosides oleuropein and ligstroside, lignans, and flavonoids. These compounds contribute significantly to the stability, flavor, and biological value of virgin olive. In the various stages of production, during storage and in the culinary uses, polar phenols and other valuable bioactive ingredients may be damaged. Oxidation, photo-oxidation, enzymic hydrolysis and heating at frying temperatures have a serious adverse effect. Due to the biological importance of the oil and its unique character, analytical methods have been developed to evaluate antioxidant activity or analyse complex phenol mixtures. These are based on radical scavenging assays and chromatographic techniques. Hyphenated methods are also used including liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.
Resumo:
This chapter presents a novel hand-held instrument capable of real-time in situ detection and identification of heavy metals, along with the potential use of novel taggants in environmental forensic investigations. The proposed system provides the facilities found in a traditional laboratory-based instrument but in a hand held design, without the need for an associated computer. The electrochemical instrument uses anodic stripping voltammetry, which is a precise and sensitive analytical method with excellent limits of detection. The sensors comprise a small disposable plastic strip of screen-printed electrodes rather than the more common glassy carbon disc and gold electrodes. The system is designed for use by a surveyor on site, allowing them to locate hotspots, thus avoiding the expense and time delay of prior laboratory analysis. This is particularly important in environmental forensic analysis when a site may have been released back to the owner and samples could be compromised on return visits. The system can be used in a variety of situations in environmental assessments, the data acquired from which provide a metals fingerprint suitable for input to a database. The proposed novel taggant tracers, based on narrow-band atomic fluorescence, are under development for potential deployment as forensic environmental tracers. The use of discrete fluorescent species in an environmentally stable host has been investigated to replace existing toxic, broadband molecular dye tracers. The narrow band emission signals offer the potential for tracing a large number of signals in the same environment. This will give increased data accuracy and allow multiple source environmental monitoring of environmental parameters.
Resumo:
Complexes of arsenic compounds and glutathione are believed to play an essential part in the metabolism and transport of inorganic arsenic and its methylated species. Up to now, the evidence of their presence is mostly indirect. We studied the stability and Chromatographic behaviour of glutathione complexes with trivalent arsenic: i.e. AsIII(GS)3, MA III(GS)2 and DMAIII(GS) under different conditions. Standard ion chromatography using PRP X-100 and carbonate or formic acid buffer disintegrated the complexes, while all three complexes are stable and separable by reversed phase chromatography (0.1% formic acid/acetonitrile gradient). AsIII(GS)3 and MAIII(GS)2 were more stable than DMAIII(GS), which even under optimal conditions tended to degrade on the column at 25 °C. Chromatography at 6 °C can retain the integrity of the samples. These results shed more light on the interpretation of a vast number of previously published arsenic speciation studies, which have used Chromatographic separation techniques with the assumption that the integrity of the arsenic species is guaranteed. © The Royal Society of Chemistry 2004.
Resumo:
In forensic investigations, it is common for forensic investigators to obtain a photograph of evidence left at the scene of crimes to aid them catch the culprit(s). Although, fingerprints are the most popular evidence that can be used, scene of crime officers claim that more than 30% of the evidence recovered from crime scenes originate from palms. Usually, palmprints evidence left at crime scenes are partial since very rarely full palmprints are obtained. In particular, partial palmprints do not exhibit a structured shape and often do not contain a reference point that can be used for their alignment to achieve efficient matching. This makes conventional matching methods based on alignment and minutiae pairing, as used in fingerprint recognition, to fail in partial palmprint recognition problems. In this paper a new partial-to-full palmprint recognition based on invariant minutiae descriptors is proposed where the partial palmprint’s minutiae are extracted and considered as the distinctive and discriminating features for each palmprint image. This is achieved by assigning to each minutiae a feature descriptor formed using the values of all the orientation histograms of the minutiae at hand. This allows for the descriptors to be rotation invariant and as such do not require any image alignment at the matching stage. The results obtained show that the proposed technique yields a recognition rate of 99.2%. The solution does give a high confidence to the judicial jury in their deliberations and decision.