108 resultados para Central Nervous System Stimulants
Resumo:
The major muscle systems of the metacercaria of the strigeid trematode, Apatemon cobitidis proterorhini have been examined using phalloidin as a site-specific probe for filamentous actin. Regional differences were evident in the organization of the body wall musculature of the forebody and hindbody, the former comprising outer circular, intermediate longitudinal and inner diagonal fibres, the latter having the inner diagonal fibres replaced with an extra layer of more widely spaced circular muscle. Three orientations of muscle fibres (equatorial, meridional, radial) were discernible in the oral sucker, acetabulum and paired lappets. Large longitudinal extensor and flexor muscles project into the hindbody where they connect to the body wall or end blindly. Innervation to the muscle systems of Apatemon was examined by immunocytochemistry, using antibodies to known myoactive substances: the flatworm FMRFamide-related neuropeptide (FaRP), GYIRFamide, and the biogenic amine, 5-hydroxytryptamine (5-HT). Strong immunostaining for both peptidergic and serotoninergic components was found in the central nervous system and confocal microscopic mapping of the distribution of these neuroactive substances revealed they occupied separate neuronal pathways. In the peripheral nervous system, GYIRFamide-immunoreactivity was extensive and, in particular, associated with the innervation of all attachment structures; serotoninergic fibres, on the other hand, were localized to the oral sucker and pharynx and to regions along the anterior margins of the forebody.
Resumo:
Cholinergic, serotoninergic and neuropeptidergic components of the nervous system were examined and compared in the progenetic metacercaria and adult gasterostome trematode, Bucephaloides gracilescens in order to provide baseline information on neuronal control of the musculature involved in egg-assembly. Enzyme cytochemistry and indirect immunocytochemical techniques interfaced with confocal scanning laser microscopy demonstrated all three classes of neuroactive substance throughout the central and peripheral nervous systems. A comparable orthogonal arrangement of the central nervous system (CNS) and peripheral array of nerve plexuses was observed in both metacercaria and adult. Staining patterns for cholinergic and peptidergic substances showed significant overlap, while the serotoninergic system was confined to a separate set of neurons. Immunostaining for FMRFamide-related peptides (FaRPs) was strong in the CNS and peripheral innervation to the attachment apparatus of metacercaria and adult but was only found in the innervation of the ootype in ovigerous adults, implicating FaRPs in neuronal control of the muscle of the female reproductive tract during egg-assembly.
Resumo:
Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.
Resumo:
Tuberculosis (TB) pleural disease is complicated by extensive tissue destruction. Matrix metalloproteinase (MMP)-1 and -9 are implicated in immunopathology of pulmonary and central nervous system TB. There are few data on MMP activity in TB pleurisy. The present study investigated MMP-1, -2 and -9 and their specific inhibitors (tissue inhibitor of metalloproteinase (TIMP)-1 and -2) in tuberculous effusions, and correlated these with clinical and histopathological features. Clinical data, routine blood tests, and pleural fluid/biopsy material were obtained from 89 patients presenting with pleural effusions in a TB-endemic area. MMP-1, -2 and -9 were measured by zymography or western blot, and TIMP-1 and -2 by ELISA. Pleural biopsies were examined microscopically, cultured for acid–alcohol fast bacilli and immunostained for MMP-9. Tuberculous pleural effusions contained the highest concentrations of MMP-9 compared with malignant effusions or heart failure transudates. MMP-9 concentrations were highest in effusions from patients with granulomatous biopsies: median (interquartile range) 108 (61–218) pg·mL-1 versus 43 (12–83) pg·mL-1 in those with nongranulomatous pleural biopsies. MMP-1 and -2 were not upregulated in tuberculous pleural fluid. The ratio of MMP-9:TIMP-1 was significantly higher in TB effusions. Tuberculous pleurisy is characterised by a specific pattern of matrix metalloproteinase-9 upregulation, correlating with the presence of granulomas and suggesting a specific role for matrix metalloproteinase-9 in inflammatory responses in tuberculous pleural disease.
Resumo:
T cell immune responses to central nervous system-derived and other self-antigens are commonly described in both healthy and autoimmune individuals. However, in the case of the human prion protein (PrP), it has been argued that immunologic tolerance is uncommonly robust. Although development of an effective vaccine for prion disease requires breaking of tolerance to PrP, the extent of immune tolerance to PrP and the identity of immunodominant regions of the protein have not previously been determined in humans. We analyzed PrP T cell epitopes both by using a predictive algorithm and by measuring functional immune responses from healthy donors. Interestingly, clusters of epitopes were focused around the area of the polymorphic residue 129, previously identified as an indicator of susceptibility to prion disease, and in the C-terminal region. Moreover, responses were seen to PrP peptide 121-134 containing methionine at position 129, whereas PrP 121-134 [129V] was not immunogenic. The residue 129 polymorphism was also associated with distinct patterns of cytokine response: PrP 128-141 [129M] inducing IL-4 and IL-6 production, which was not seen in response to PrP 128-141 [129V]. Our data suggest that the immunogenic regions of human PrP lie between residue 107 and the C-terminus and that, like with many other central nervous system antigens, healthy individuals carry responses to PrP within the T cell repertoire and yet do not experience deleterious autoimmune reactions.
Resumo:
Muscarinic acetylcholine receptors (mAChRs) provide viable targets for the treatment of multiple central nervous system disorders. We have used cheminformatics and medicinal chemistry to develop new, highly selective M4 allosteric potentiators. VU10010, the lead compound, potentiates the M4 response to acetylcholine 47-fold while having no activity at other mAChR subtypes. This compound binds to an allosteric site on the receptor and increases affinity for acetylcholine and coupling to G proteins. Whole-cell patch clamp recordings revealed that selective potentiation of M4 with VU10010 increases carbachol-induced depression of transmission at excitatory but not inhibitory synapses in the hippocampus. The effect was not mimicked by an inactive analog of VU10010 and was absent in M4 knockout mice. Selective regulation of excitatory transmission by M4 suggests that targeting of individual mAChR subtypes could be used to differentially regulate specific aspects of mAChR modulation of function in this important forebrain structure.
Resumo:
Aims: Infection of the mouse central nervous system with wild type (WT) and vaccine strains of measles virus (MV) results in lack of clinical signs and limited antigen detection. It is considered that cell entry receptors for these viruses are not present on murine neural cells and infection is restricted at cell entry.
Methods: To examine this hypothesis, virus antigen and caspase 3 expression (for apoptosis) was compared in primary mixed, neural cell cultures infected in vitro or prepared from mice infected intracerebrally with WT, vaccine or rodent neuroadapted viruses. Viral RNA levels were examined in mouse brain by nested and real-time reverse transcriptase polymerase chain reaction.
Results: WT and vaccine strains were demonstrated for the first time to infect murine oligodendrocytes in addition to neurones despite a lack of the known MV cell receptors. Unexpectedly, the percentage of cells positive for viral antigen was higher for WT MV than neuroadapted virus in both in vitro and ex vivo cultures. In the latter the percentage of positive cells increased with time after mouse infection. Viral RNA (total and mRNA) was detected in brain for up to 20 days, while cultures were negative for caspase 3 in WT and vaccine virus infections.
Conclusions: WT and vaccine MV strains can use an endogenous cell entry receptor(s) or alternative virus uptake mechanism in murine neural cells. However, viral replication occurs at a low level and is associated with limited apoptosis. WT MV mouse infection may provide a model for the initial stages of persistent MV human central nervous system infections.
Resumo:
The mammalian nervous system exerts essential control on many physiological processes in the organism and is itself controlled extensively by a variety of genetic regulatory mechanisms. microRNA (miR), an abundant class of small non-coding RNA, are emerging as important post-transcriptional regulators of gene expression in the brain. Increasing evidence indicates that miR regulate both the development and function of the nervous system. Moreover, deficiency in miR function has also been implicated in a number of neurological disorders. Expression profile analysis of miR is necessary to understand their complex role in the regulation of gene expression during the development and differentiation of cells. Here we present a comparative study of miR expression profiles in neuroblastoma, in cortical development, and in neuronal differentiation of embryonic stem (ES) cells. By microarray profiling in combination with real time PCR we show that miR-7 and miR-214 are modulated in neuronal differentiation (as compared to miR-1, -16 and -133a), and control neurite outgrowth in vitro. These findings provide an important step toward further elucidation of miR function and miR-related gene regulatory networks in the mammalian central nervous system. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Until recently, the central nervous system (CNS) has been thought to be an immune privileged organ. However, it is now understood that neuroinflammation is linked with the development of several CNS diseases including late-onset Alzheimer's disease (LOAD). The development of inflammation is a complex process involving a wide array of molecular interactions which in the CNS remains to be further characterized. The development of neuroinflammation may represent an important link between the early stages of LOAD and its pathological outcome. It is proposed that risks for LOAD, which include genetic, biological and environmental factors can each contribute to impairment of normal CNS regulation and function. The links between risk factors and the development of neuroinflammation are numerous and involve many complex interactions which contribute to vascular compromise, oxidative stress and ultimately neuroinflammation. Once this cascade of events is initiated, the process of neuroinflammation can become overactivated resulting in further cellular damage and loss of neuronal function. Additionally, neuroinflammation has been associated with the formation of amyloid plaques and neurofibrillary tangles, the pathological hallmarks of LOAD. Increased levels of inflammatory markers have been correlated with an advanced cognitive impairment. Based on this knowledge, new therapies aimed at limiting onset of neuroinflammation could arrest or even reverse the development of the disease.
Resumo:
In 2006 and 2007, elevated numbers of deaths among seals, constituting an unusual mortality event, occurred off the coasts of Maine and Massachusetts, United States. We isolated a virus from seal tissue and confirmed it as phocine distemper virus (PDV). We compared the viral hemagglutinin, phosphoprotein, and fusion (F) and matrix (M) protein gene sequences with those of viruses from the 1988 and 2002 PDV epizootics. The virus showed highest similarity with a PDV 1988 Netherlands virus, which raises the possibility that the 2006 isolate from the United States might have emerged independently from 2002 PDVs and that multiple lineages of PDV might be circulating among enzootically infected North American seals. Evidence from comparison of sequences derived from different tissues suggested that mutations in the F and M genes occur in brain tissue that are not present in lung, liver, or blood, which suggests virus persistence in the central nervous system.
Resumo:
Background: Co-localisation is a widely used measurement in immunohistochemical analysis to determine if fluorescently labelled biological entities, such as cells, proteins or molecules share a same location. However the measurement of co-localisation is challenging due to the complex nature of such fluorescent images, especially when multiple focal planes are captured. The current state-of-art co-localisation measurements of 3-dimensional (3D) image stacks are biased by noise and cross-overs from non-consecutive planes.
Method: In this study, we have developed Co-localisation Intensity Coefficients (CICs) and Co-localisation Binary Coefficients (CBCs), which uses rich z-stack data from neighbouring focal planes to identify similarities between image intensities of two and potentially more fluorescently-labelled biological entities. This was developed using z-stack images from murine organotypic slice cultures from central nervous system tissue, and two sets of pseudo-data. A large amount of non-specific cross-over situations are excluded using this method. This proposed method is also proven to be robust in recognising co-localisations even when images are polluted with a range of noises.
Results: The proposed CBCs and CICs produce robust co-localisation measurements which are easy to interpret, resilient to noise and capable of removing a large amount of false positivity, such as non-specific cross-overs. Performance of this method of measurement is significantly more accurate than existing measurements, as determined statistically using pseudo datasets of known values. This method provides an important and reliable tool for fluorescent 3D neurobiological studies, and will benefit other biological studies which measure fluorescence co-localisation in 3D.
Resumo:
Previous studies have shown that following whole-body irradiation bone marrow (BM)-derived cells can migrate into the central nervous system, including the retina, to give rise to microglia-like cells. The detailed mechanism, however, remains elusive. We show in this study that a single-dose whole-body ?-ray irradiation (8 Gy) induced subclinical damage (i.e., DNA damage) in the neuronal retina, which is accompanied by a low-grade chronic inflammation, para-inflammation, characterized by upregulated expression of chemokines (CCL2, CXCL12, and CX3CL1) and complement components (C4 and CFH), and microglial activation. The upregulation of chemokines CCL2 and CXCL12 and complement C4 lasted for more than 160 days, whereas the expression of CX3CL1 and CFH was upregulated for 2 weeks. Both resident microglia and BM-derived phagocytes displayed mild activation in the neuronal retina following irradiation. When BM cells from CX3CR1gfp/+ mice or CX3CR1gfp/gfp mice were transplanted to wild-type C57BL/6 mice, more than 90% of resident CD11b+ cells were replaced by donor-derived GFP+ cells after 6 months. However, when transplanting CX3CR1gfp/+ BM cells into CCL2-deficient mice, only 20% of retinal CD11b+ cells were replaced by donor-derived cells at 6 month. Our results suggest that the neuronal retina suffers from a chronic stress following whole-body irradiation, and a para-inflammatory response is initiated, presumably to rectify the insults and maintain homeostasis. The recruitment of BM-derived myeloid cells is a part of the para-inflammatory response and is CCL2 but not CX3CL1 dependent. © 2012 Wiley Periodicals, Inc.
Resumo:
All animals face hazards that cause tissue damage and most have nociceptive reflex responses that protect them from such damage. However, some taxa have also evolved the capacity for pain experience, presumably to enhance longterm protection through behavior modification based on memory of the unpleasant nature of pain. In this article I review various criteria that might distinguish nociception from pain. Because nociceptors are so taxonomically widespread, simply demonstrating their presence is not sufficient. Furthermore, investigation of the central nervous system provides limited clues about the potential to experience pain. Opioids and other analgesics might indicate a central modulation of responses but often peripheral effects could explain the analgesia; thus reduction of responses by analgesics and opioids does not allow clear discrimination between nociception and pain. Physiological changes in response to noxious stimuli or the threat of a noxious stimulus might prove useful but, to date, application to invertebrates is limited. Behavior of the organism provides the greatest insights. Rapid avoidance learning and prolonged memory indicate central processing rather than simple reflex and are consistent with the experience of pain. Complex, prolonged grooming or rubbing may demonstrate an awareness of the specific site of stimulus application. Tradeoffs with other motivational systems indicate central processing, and an ability to use complex information suggests sufficient cognitive ability for the animal to have a fitness benefit from a pain experience. Available data are consistent with the idea of pain in some invertebrates and go beyond the idea of just nociception but are not definitive. In the absence of conclusive data, more humane care for invertebrates is suggested.
Resumo:
Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl) benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phen-cyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl) phenyl) methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl) ethynyl) nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.
Resumo:
Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M 1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M-1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)benzo[c][1,2,5]thiadiazole-4-sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M-1 mAChRs relative to M-2-M-5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M-1 mAChRs, a surprising finding given the high level of M-1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilo-carpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M-1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.