81 resultados para Cellulose.
Resumo:
Freestanding films containing nanocrystalline TiO2 and a suitable electron donor embedded in a cellulose matrix deoxygenate a closed environment (see Figure) upon UV illumination as a result of the photocatalytic properties of TiO2. This opens up the potential use of semiconductor photocatalysis in active packaging to achieve light-driven deoxygenation of closed environments.
Resumo:
A novel UV indicator is described, comprising nanocrystalline particles of titania dispersed in a film of a polymer, hydroxyl ethyl cellulose (HEC), containing: a mild reducing agent, triethanolamine (TEOA) and a redox indicator, methylene blue (MB). The UV indicator film is blue-coloured in the absence of UV light and loses colour upon exposure to UV light, attaining within a few min a steady-state degree of bleaching that can provide a measure of the irradiance of the incident light. The original blue colour of the film returns once the source of UV light is removed. The spectral characteristics of a typical UV indicator film, and its components, are discussed and the UV-absorbing action of the titania particles highlighted. From the measured %bleaching undergone by a typical UV indicator as a function of light irradiance the indicator appears fully bleached, within 7 min, by a UV irradiance of 3 mW cm (-) or greater. The mechanism by which the UV indicator works is described. The reversible nature of the UV indicator is removed by covering a typical UV indicator with a thin, largely oxygen impermeable, polymer film, such as the regenerated cellulose found in Sellotape(TM). The product is a UV dosimeter, the response of which is related to the intensity and duration of the incident UV light, as well as the amount of titania in the film. A typical UV dosimeter film is fully bleached by 250 mJ cm(-2) of UV light. The possible use of these novel indicators to measure UV exposure levels, irradiance and dose, is discussed.
Resumo:
The features of two popular models used to describe the observed response characteristics of typical oxygen optical sensors based on luminescence quenching are examined critically. The models are the 'two-site' and 'Gaussian distribution in natural lifetime, tau(o),' models. These models are used to characterise the response features of typical optical oxygen sensors; features which include: downward curving Stern-Volmer plots and increasingly non-first order luminescence decay kinetics with increasing partial pressures of oxygen, pO(2). Neither model appears able to unite these latter features, let alone the observed disparate array of response features exhibited by the myriad optical oxygen sensors reported in the literature, and still maintain any level of physical plausibility. A model based on a Gaussian distribution in quenching rate constant, k(q), is developed and, although flawed by a limited breadth in distribution, rho, does produce Stern-Volmer plots which would cover the range in curvature seen with real optical oxygen sensors. A new 'log-Gaussian distribution in tau(o) or k(q)' model is introduced which has the advantage over a Gaussian distribution model of placing no limitation on the value of rho. Work on a 'log-Gaussian distribution in tau(o)' model reveals that the Stern-Volmer quenching plots would show little degree in curvature, even at large rho values and the luminescence decays would become increasingly first order with increasing pO(2). In fact, with real optical oxygen sensors, the opposite is observed and thus the model appears of little value. In contrast, a 'log-Gaussian distribution in k(o)' model does produce the trends observed with real optical oxygen sensors; although it is technically restricted in use to those in which the kinetics of luminescence decay are good first order in the absence of oxygen. The latter model gives a good fit to the major response features of sensors which show the latter feature, most notably the [Ru(dpp)(3)(2+)(Ph4B-)(2)] in cellulose optical oxygen sensors. The scope of a log-Gaussian model for further expansion and, therefore, application to optical oxygen sensors, by combining both a log-Gaussian distribution in k(o) with one in tau(o) is briefly discussed.
Resumo:
The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.
Resumo:
A homologous family of dialkyl phthalates has been used to investigate the effect of plasticizer/polymer compatibility on the response characteristics of transparent, plastic, thin optical gas sensing films for CO2 and oxygen. Plasticizer/polymer compatibilities were determined through the value of the difference in solubility parameter, i.e. Delta delta, for the plasticizer and polymer with a Delta delta value of zero indicating high compatibility. A strong correlation was found between plasticizer/polymer compatibility and sensitivity in phenol red/ethyl cellulose CO2-sensitive films and this relationship extended to CO2-sensitive films based on other polymers such as polystyrene and poly(methyl methacrylate). It extended also to optical O-2-sensitive films implying that the relationship is general for thin-film optical sensors. Other results from the CO2-sensitive films in different polymers indicated that the film sensitivity is largely independent of the polymer matrix regardless of its inherent gas permeability, when a sufficient quantity of compatible plasticizer is present. (C) 1998 Elsevier Science B.V.
Resumo:
Two porphyrins, platinum(II) octaethylporphyrin (Pt-OEP) and palladium(II) octaethylporphyrin (Pd-OEP), are incorporated into a wide variety of different encapsulating matricies and tested as oxygen sensors, The excited state lifetimes of the two porphyrins are quite different, 0.091 ms for Pt-OEP and 0.99 ms for Pd-OEP, and Pt-OEP-based oxygen sensors are found to be much less sensitive than Pd-OEP-based ones to quenching by oxygen, Two major response characteristics of an oxygen sensor are (i) its sensitivity toward oxygen and (ii) its response and recovery times when exposed to an alternating atmosphere of nitrogen and air. The response characteristics of a rang of Pt-OEP, and Pd-OEP-based oxygen sensors were determined using cellulose acetate butyrate (CAB), poly(methyl methacrylate) (PMMA), and PMMA/CAB polymer blends as the encapsulating media. Pt-OEP and Pd-OEP oxygen sensors have better response characteristics (i.e., more sensitive and lower response and recovery times) when CAB is used as the encapsulating medium rather than PMMA. For both Pt-OEP- and Pd-OEP-based oxygen sensors, in either polymer, increasing the level of tributyl phosphate plasticizer improves the response characteristics of the final oxygen-sensitive film. Pt-OEP in different unplasticized PMMA/CAB blended films produced a range of oxygen sensors in which the response characteristics improved with increasing level of CAB present.
Resumo:
Different luminescent, hydrophillic ruthenium diimine cationic complexes are rendered soluble in the hydrophobic medium of a plasticised polymer through ion-pair coupling with a hydrophobic anion, such as tetraphenyl berate. Based on this approach, a number of different oxygen sensitive films, i.e., luminescent, thin plastic films which respond to oxygen-the latter quenches the luminescence were prepared, using the polymer, cellulose acetate, plasticised with tributylphosphate. Of the resultant thin oxygen sensitive films tested, the one containing the luminescent ion-pair ruthenium (II) tris(4,7-diphenyl-1,IO-phenanthroline) ditetraphenyl berate, [Ru(dpp)(3)(2+)(Ph4B-)(2)], was found to be the most sensitive, and its response characteristics were subsequently studied as a function of plasticiser content, temperature and stability in use, and with age. The major response characteristics, i.e., film sensitivity towards oxygen and response and recovery times, depend very strongly upon the overall level of plasticiser present in film; the film is more sensitive and faster in response and recovery the greater the level of plasticiser employed. Thus, the response of the film towards oxygen can be tuned by varying the level of plasticiser in the film. Film sensitivity towards oxygen is largely independent on temperature, whereas its response and recovery times decrease with increasing temperature (E-a = -10.3+/-0.4 kJ mol(-1)). The sensitivity of a typical luminescent film is very stable when used continuously over a 24-h period, decreases by ca. 20% with age when stored at ambient temperature over a period of 29 days, but very little over the same period of time when stored in the freezer section of a fridge. (C) 1997 Elsevier Science S.A.
Resumo:
The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.
Resumo:
Mucosally-administered vaccine strategies are widely investigated as a promising means of preventing HIV infection. This study describes the development of liposomal gel formulations, and novel lyophilised variants, comprising HIV-1 envelope glycoprotein, CN54gp140, encapsulated within neutral, positively charged or negatively charged liposomes. The CN54gp140 liposomes were evaluated for mean vesicle diameter, polydispersity, morphology, zeta potential and antigen encapsulation efficiency before being incorporated into hydroxyethyl cellulose (HEC) aqueous gel and subsequently lyophilised to produce a rod-shaped solid dosage form for practical vaginal application. The lyophilised liposome-HEC rods were evaluated for moisture content and redispersibility in simulated vaginal fluid. Since these rods are designed to revert to gel form following intravaginal application, mucoadhesive, mechanical (compressibility and hardness) and rheological properties of the reformed gels were evaluated. The liposomes exhibited good encapsulation efficiency and the gels demonstrated suitable mucoadhesive strength. The freeze-dried liposome-HEC formulations represent a novel formulation strategy that could offer potential as stable and practical dosage form.
Resumo:
Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. © 2012 Elsevier B.V. All rights reserved.
Resumo:
We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose d O and d H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. © 2012 Wolfe et al.
Resumo:
Nine species of Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe and analysed for cellulases, ligninases, extracellular phenolases and wood degrading ability for the first time. Cellulase enzyme activities varied widely among the species. After 15 d growth exo-glucanase activity had increased in the majority of species whilst Biter paper activity showed the opposite trend, being greatly reduced in all species on day 15 compared to day IO. Endo-glucanase activity was relatively uniform at both sampling times. The fungi were more active against water soluble cellulose derivatives than filter paper cellulase. In all the fungi tested, cellulose activity on filter paper was significantly less than endo- and exo-glucanase activities. The highest cellulase activity was expressed by Cerrena meyenii (683 U mg(-1)) Phaeotrametes decipiens, Trametes modesta, and T. pocas also expressed relatively high cellulase activity on all types of cellulose tested. All Trametes species tested positive for extracellular phenol oxidases whilst Fomotopsis spragueii and Irpex stereoides tested negative. Ail but one of the Trametes species in the study were able to degrade two different lignin preparations in tests for lignin degradation. T. menziesii was unable to degrade both lignin preparations although it had tested positive for production of extracellular oxidase. The species in this study degraded hardwood to a greater extent than softwood. Eight of them caused more than 80% dry weight loss of wood blocks during 70 d incubation. Those fungi that expressed high cellulase activity also caused high weight loss on wood.
Resumo:
The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.
Resumo:
Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
Resumo:
The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox(R) forte and Bioloxl(R) delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce '3-body' abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 mu m alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the '3-body' abrasive wear mechanisms is discussed and the effect of material properties compared. (C) 2009 Elsevier B.V. All rights reserved.