92 resultados para Carter Oil Company
Resumo:
Does the use of HRM practices by multinational companies (MNCs) reflect their national origins or are practices similar regardless of context? To the extent that practices are similar, is there any evidence of global best standards? The authors use the system, societal, and dominance framework to address these questions through analysis of 1,100 MNC subsidiaries in Canada, Ireland, Spain, and the United Kingdom. They argue that this framework offers a richer account than alternatives such as varieties of capitalism. The study moves beyond previous research by differentiating between system effects at the global level and dominance effects arising from the diffusion of practices from a dominant economy. It shows that both effects are present, as are some differences at the societal level. Results suggest that MNCs configure their HRM practices in response to all three forces rather than to some uniform global best practices or to their national institutional contexts.
Resumo:
The ability of building information modeling (BIM) to positively impact projects in the AEC through greater collaboration and integration is widely acknowledged. This paper aims to examine the development of BIM and how it can contribute to the cold-formed steel (CFS) building industry. This is achieved through the adoption of a qualitative methodology encompassing a literature review, exploratory interviews with industry experts, culminating in the development of e-learning material for the sector. In doing so, the research team have collaborated with one of the United Kingdom’s largest cold-formed steel designer/fabricators. By demonstrating the capabilities of BIM software and providing technical and informative videos in its creation, this project has found two key outcomes. Firstly, to provide invaluable assistance in the transition from traditional processes to a fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. Secondly, to demonstrate BIM’s potential not only within CFS companies, but also within the AEC sector as a whole. As the flexibility, adaptability and interoperability of BIM software is alluded to, the results indicate that the introduction and development of BIM and the underlying ethos suggests that it is a key tool in the development of the industry as a whole.
Resumo:
Refined vegetable oils are widely used in the food industry as ingredients or components in many processed food products in the form of oil blends. To date, the generic term 'vegetable oil' has been used in the labelling of food containing oil blends. With the introduction of new EU Regulation for Food Information (1169/2011) due to take effect in 2014, the oil species used must be clearly identified on the package and there is a need for development of fit for purpose methodology for industry and regulators alike to verify the oil species present in a product. The available methodologies that may be employed to authenticate the botanical origin of a vegetable oil admixture were reviewed and evaluated. The majority of the sources however, described techniques applied to crude vegetable oils such as olive oil due to the lack of refined vegetable oil focused studies. Nevertheless, DNA based typing methods and stable isotopes procedures were found not suitable for this particular purpose due to several issues. Only a small number of specific chromatographic and spectroscopic fingerprinting methods in either targeted or untargeted mode were found to be applicable in potentially providing a solution to this complex authenticity problem. Applied as a single method in isolation, these techniques would be able to give limited information on the oils identity as signals obtained for various oil types may well be overlapping. Therefore, more complex and combined approaches are likely to be needed to identify the oil species present in oil blends employing a stepwise approach in combination with advanced chemometrics. Options to provide such a methodology are outlined in the current study.
Resumo:
Identification of adulteration in mechanically extracted oils or the botanical origin of refined vegetable oil blends can be effectively achieved through the combination of spectroscopic methods and chemometric techniques. Chromatographic methods remain highly relevant but suffer from various limitations which derive from natural compositional variation. Modern multivariate techniques have demonstrated that it is possible to identify patterns and effectively classify unknown samples in both cases. Development of robust analytical methodologies requires however vigorous validation. Spectroscopic methods combined with chemometric techniques lack established validation protocols and this might hinder their use by law enforcement authorities.
Resumo:
13.Vidovic M., Miljus M., Vlajic J., (2002), "Risk minimization in logistic processes with oil products", Proceedings of the 6th International Conference on Traffic Science, ICTS 2002, Portorož, Slovenia, pp. 568-577;
Resumo:
The adulteration of extra virgin olive oil with other vegetable oils is a certain problem with economic and health consequences. Current official methods have been proved insufficient to detect such adulterations. One of the most concerning and undetectable adulterations with other vegetable oils is the addition of hazelnut oil. The main objective of this work was to develop a novel dimensionality reduction technique able to model oil mixtures as a part of an integrated pattern recognition solution. This final solution attempts to identify hazelnut oil adulterants in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. The proposed Continuous Locality Preserving Projections (CLPP) technique allows the modelling of the continuous nature of the produced in house admixtures as data series instead of discrete points. This methodology has potential to be extended to other mixtures and adulterations of food products. The maintenance of the continuous structure of the data manifold lets the better visualization of this examined classification problem and facilitates a more accurate utilisation of the manifold for detecting the adulterants.
Resumo:
European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work.
Resumo:
The new Food Information Regulation (1169/2011), dictates that in a refined vegetable oil blend, the type of oil must be clearly identified in the package in contract with current practice where is labelled under the generic and often misleading term “vegetable oil”. With increase consumer awareness in food authenticity, as shown in the recent food scandal with horsemeat in beef products, the identification of the origin of species in food products becomes increasingly relevant. Palm oil is used extensively in food manufacturing and as global demand increases, producing countries suffer from the aftermath of intensive agriculture. Even if only a small portion of global production, sustainable palm oil comes in great demand from consumers and industry. It is therefore of interest to detect the presence of palm oil in food products as consumers have the right to know if it is present in the product or not, mainly from an ethical point of view. Apart from palm oil and its derivatives, rapeseed oil and sunflower oil are also included. With DNA-based methods, the gold standard for the detection of food authenticity and species recognition deemed not suitable in this analytical problem, the focus is inevitably drawn to the chromatographic and spectroscopic methods. Both chromatographic (such as GC-FID and LC-MS) and spectroscopic methods (FT-IR, Raman, NIR) are relevant. Previous attempts have not shown promising results due to oils’ natural variation in composition and complex chemical signals but the suggested two-step analytical procedure is a promising approach with very good initial results.
Resumo:
Detection of adulteration of non-processed vegetable oil with lesser value seed oils (classic example is hazelnut in virgin olive oil) has been in the centre of scientific attention for many years and several chemical methods were proposed. The recent EC Regulation 1169/2011, however, introduces necessity for different analytical method in a more complicated matrix. From the end of 2014, food businesses required to declare the composition of the refined oil mixture in the food product label. This creates a gap since there is no analytical method currently available to perform such analysis. In the first phase the work focused on 100% oil blends of various oil species of palm oil (and derivatives), sunflower and rapeseed oil before expanding to foodstuffs. Chromatographic methods remain highly relevant although suffer from various limitations which derive from natural compositional variation. Modern multivariate techniques based on machine learning algorithms, however, when applied in FTIR, Raman spectroscopic data have a strong potential in tackling the problem.