74 resultados para COASTAL LAGOON
Resumo:
ecosystems. Coastal oceanic upwelling, for example, has been associated with elevatedbiomass and abundance patterns of certain functional groups, e.g., corticated macroalgae.In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthiccomposition, structure and trophic ecology across eighteen shores varying in theirproximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scalesof >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmedby the stable isotope values (δ13C and δ15N) of consumers, including a dominantsuspension feeder, grazers, and their putative resources of POM, epilithic biofilm, andmacroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel,Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previousstudies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation,ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Ourresults showed macroalgal assemblage composition, and benthic consumer assemblagestructure, varied significantly with the intertidal influence of coastal upwelling, especiallycontrasting bays and coastal headlands. Coastal topography also separated differences inconsumer resource use. This suggested that coastal upwelling, itself driven by coastlinetopography, influences intertidal communities by advecting nearshore phytoplankton populationsoffshore and cooling coastal water temperatures. We recommend the isotopic valuesof benthic organisms, specifically long-lived suspension feeders, as in situ alternativesto offshore measurements of upwelling influence
Resumo:
The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland to the famous Giant’s Causeway in the North has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). At various locations along the route, fluid interactions between the problematic geology, Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability within the vadose zone. During such instances of instability, debris flows and composite mudflows encroach on the carriageway posing a hazard to road users. This paper examines the site investigative, geotechnical and spatial analysis techniques currently being implemented to monitor slope stability for one site at Straidkilly Point, Glenarm, Northern Ireland. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration dynamic data.
Terrestrial LiDAR (TLS) was applied to the slope for the monitoring of failures, with surveys carried out on a bi-monthly basis. TLS monitoring allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, erosion and deposition. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters are characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDARi datasets were used for the spatio-morphological characterisation of the slope on a macro scale. Results from the geotechnical and environmental monitoring were compared with spatial data obtained through Terrestrial and Airborne LiDAR, providing a multi-faceted approach to slope stability characterization, which facilitates more informed management of geotechnical risk by the Northern Ireland Roads Service.
Resumo:
The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). However the problematic geology; Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability manifested in both shallow debris flows and occasional massive rotational movements, creating a geotechnical risk to this highway. This paper describes how a variety of techniques are being used to both assess instability and monitor movement of these active slopes near one site at Straidkilly Point, Glenarm. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration data. Terrestrial LiDAR (TLS), with surveys carried out on a bi-monthly basis allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, accumulation and depletion. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters were characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDAR datasets were used for the spatio-morphological characterisation of the slope on a macro scale. A Differential Global Positioning System (dGPS) was also deployed on site to provide a real-time warning system for gross movements, which were also correlated with environmental conditions. Frequent electrical resistivity tomography (ERT) surveys were also implemented to provide a better understanding of long-term changes in soil moisture and help to define the complex geology. The paper describes how the data obtained via a diverse range of methods has been combined to facilitate a more informed management regime of geotechnical risk by the Northern Ireland Roads Service.
Resumo:
This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimizing manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar
traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.
Resumo:
The bacterial community composition and biomass abundance from a depositional mud belt in the western Irish Sea and regional sands were investigated by phospholipid ester-linked fatty acid profiling, denaturing gradient gel electrophoresis and barcoded pyrosequencing of 16S rRNA genes. The study area varied by water depth (12-111 m), organic carbon content (0.09-1.57% TOC), grain size, hydrographic regime (well-mixed vs. stratified), and water column phytodetrital input (represented by algal polyunsaturated PLFA). The relative abundance of bacterial-derived PLFA (sum of methyl-branched, cyclopropyl and odd-carbon number PLFA) was positively correlated with fine-grained sediment, and was highest in the depositional mud belt. A strong association between bacterial biomass and eukaryote primary production was suggested based on observed positive correlations with total nitrogen and algal polyunsaturated fatty acids. In addition, 16S rRNA genes affiliated to the classes Clostridia and Flavobacteria represented a major proportion of total 16S rRNA gene sequences. This suggests that benthic bacterial communities are also important degraders of phytodetrital organic matter and closely coupled to water column productivity in the western Irish Sea.
Resumo:
Climate change is expected to have an impact on plant communities as increased temperatures are expected to drive individual species' distributions polewards. The results of a revisitation study after c. 34years of 89 coastal sites in Scotland, UK, were examined to assess the degree of shifts in species composition that could be accounted for by climate change. There was little evidence for either species retreat northwards or for plots to become more dominated by species with a more southern distribution. At a few sites where significant change occurred, the changes were accounted for by the invasion, or in one instance the removal, of woody species. Also, the vegetation types that showed the most sensitivity to change were all early successional types and changes were primarily the result of succession rather than climate-driven changes. Dune vegetation appears resistant to climate change impacts on the vegetation, either as the vegetation is inherently resistant to change, management prevents increased dominance of more southerly species or because of dispersal limitation to geographically isolated sites.
Resumo:
Coastal and estuarine landforms provide a physical template that not only accommodates diverse ecosystem functions and human activities, but also mediates flood and erosion risks that are expected to increase with climate change. In this paper, we explore some of the issues associated with the conceptualisation and modelling of coastal morphological change at time and space scales relevant to managers and policy makers. Firstly, we revisit the question of how to define the most appropriate scales at which to seek quantitative predictions of landform change within an age defined by human interference with natural sediment systems and by the prospect of significant changes in climate and ocean forcing. Secondly, we consider the theoretical bases and conceptual frameworks for determining which processes are most important at a given scale of interest and the related problem of how to translate this understanding into models that are computationally feasible, retain a sound physical basis and demonstrate useful predictive skill. In particular, we explore the limitations of a primary scale approach and the extent to which these can be resolved with reference to the concept of the coastal tract and application of systems theory. Thirdly, we consider the importance of different styles of landform change and the need to resolve not only incremental evolution of morphology but also changes in the qualitative dynamics of a system and/or its gross morphological configuration. The extreme complexity and spatially distributed nature of landform systems means that quantitative prediction of future changes must necessarily be approached through mechanistic modelling of some form or another. Geomorphology has increasingly embraced so-called ‘reduced complexity’ models as a means of moving from an essentially reductionist focus on the mechanics of sediment transport towards a more synthesist view of landform evolution. However, there is little consensus on exactly what constitutes a reduced complexity model and the term itself is both misleading and, arguably, unhelpful. Accordingly, we synthesise a set of requirements for what might be termed ‘appropriate complexity modelling’ of quantitative coastal morphological change at scales commensurate with contemporary management and policy-making requirements: 1) The system being studied must be bounded with reference to the time and space scales at which behaviours of interest emerge and/or scientific or management problems arise; 2) model complexity and comprehensiveness must be appropriate to the problem at hand; 3) modellers should seek a priori insights into what kind of behaviours are likely to be evident at the scale of interest and the extent to which the behavioural validity of a model may be constrained by its underlying assumptions and its comprehensiveness; 4) informed by qualitative insights into likely dynamic behaviour, models should then be formulated with a view to resolving critical state changes; and 5) meso-scale modelling of coastal morphological change should reflect critically on the role of modelling and its relation to the observable world.
Resumo:
Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.
We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.
Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.
Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.