145 resultados para CLEAVAGE SITES
Resumo:
In this paper I examine the scope of publicly available information on the religious composition of employees in private-sector companies in Northern Ireland. I highlight the unavailability of certain types of monitoring data and the impact of data aggregation at company as opposed to site level. Both oversights lead to underestimates of the extent of workplace segregation in Northern Ireland. The ability to provide more-coherent data on workplace segregation, by religion, in Northern Ireland is crucial in terms of advancing equality and other social-justice agendas. I argue that a more-accurate monitoring of religious composition of workplaces is part of an overall need to develop a spatial approach in which the importance of ethnically territorialised spaces in the reproduction of ethnosectarian disputation is understood.
Resumo:
Oligonucleotides containing a 3'-thiothymidine residue (T3's) at the cleavage site for the EcoRV restriction endonuclease (between the central T and A residues of the sequence GATATC) have been prepared on an automated DNA synthesizer using 5'-O-monomethoxytritylthymidine 3'-S-(2-cyanoethyl N,N-di-isopropylphosphorothioamidite). The self-complementary sequence GACGAT3'sATCGTC was completely resistant to cleavage by EcoRV, while the heteroduplex composed of 5'-TCTGAT3'sATCCTC and 5'-GAGGATATCAGA (duplex 4) was cleaved only in the unmodified strand (5'-GAGGATATCAGA). In contrast, strands containing a 3'-S-phosphorothiolate linkage could be chemically cleaved specifically at this site with Ag+. A T3's residue has also been incorporated in the (-) strand of double-stranded closed circular (RF IV) M13mp18 DNA at the cleavage site of a unique EcoRV recognition sequence by using 5'-pCGAGCTCGAT3'sATCGTAAT as a primer for polymerization on the template (+) strand of M13mp18 DNA. On treatment of this substrate with EcoRV, only one strand was cleaved to produce the RF II or nicked DNA. Taken in conjunction with the cleavage studies on the oligonucleotides, this result demonstrates that the 3'-S-phosphorothiolate linkage is resistant to scission by EcoRV. Additionally, the phosphorothiolate-containing strand of the M13mp18 DNA could be cleaved specifically at the point of modification using iodine in aqueous pyridine. The combination of enzymatic and chemical techniques provides, for the first time, a demonstrated method for the sequence-specific cleavage of either the (+) or (-) strand.
Resumo:
The title compound is readily prepared from 5'-O-monomethoxytrityl-3'-thiothymidine (5); cleavage of the P–S bond can be accomplished by mild oxidative hydrolysis.
Resumo:
New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.
Resumo:
The disilylated compound 1,4-bis(trimethylsilyl)-2,3,5,6-tetrakis((dimethylamino)methyl)benzene, (Me(3)Si)(2)C2N4, 4, can be electrophilically palladated selectively at the C-Si bonds to afford the neutral 1,4-bis(palladium) complex [(AcOPd)(2)(C2N4)], from which the dicationic [(LPd)(2)(C2N4)](2+) (L = MeCN) organometallic species are accessible. The monosilylated species (Me(3)Si)(H)C2N4, 5, can be used for the preparation of the dicationic heterodinuclear platinum(II)-palladium(II) species [(LPd)(LPt)(C2N4)](2+) (L = MeCN) via a sequence of transmetalation of the organolithium derivative of 5 with [PtCl2(SEt(2))(2)], followed by a C-Si bond palladation reaction.
Resumo:
Clock-shifted homing pigeons were tracked from familiar sites 17.1km and 23.5 km from the home loft in Pisa, Italy, using an on-board route recorder. At the first release site, north of home, the majority of clock-shifted birds had relatively straight tracks comparable with those of control birds, At the second release site, south of home, the clock-shifted birds deflected in the direction predicted for the degree of clock shift, with many birds travelling some distance in the wrong direction before correcting their course. The possible role of large-scale terrain features in homing pigeon navigation is discussed.
Resumo:
The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope (HST) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8 sigma significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with M-ZAMS = 15-18 M-circle dot. The progenitors of the other five SNe were below the 3 sigma detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to M-ZAMS
Resumo:
A novel, inducible, carbon-phosphorus bond-cleavage enzyme, phosphonoacetate hydrolase, was purified from cells of Pseudomonas fluorescens 23F grown phosphonoacetate. The native enzyme had a molecular mass of approximately 80 kDa and, upon SDS/PAGE, yielded a homogenous protein band with an apparent molecular mass of about 38 kDa. Activity of purified phosphonoacetate hydrolase was Zn2+ dependent and showed pH and temperature optima of approximately 7.8 and 37 degrees C, respectively. The purified enzyme had an apparent K-m of 1.25 mM for its sole substrate phosphonoacetate, and was inhibited by the structural analogues 3-phosphonopropionate and phosphonoformate. The NH2-terminal sequence of the first 19 amino acids displayed no significant similarity to other databank sequences.