183 resultados para CALCULATED OSCILLATOR-STRENGTHS
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in Be-like Ti XIX. The general-purpose relativistic atomic structure package is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 98 levels of the n≤ 4 configurations. Additionally, theoretical lifetimes are listed for all 98 levels. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.7K. Comparisons are made with similar data obtained from the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for forbidden transitions, are also discussed.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Kr XXXV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac Atomic R-matrix Code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels. Additionally, theoretical lifetimes are listed for all 49 levels. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 8.1K. Comparisons are made with similar data obtained with the Flexible Atomic Code (fac) to assess the accuracy of the results and to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Differences between the collision strengths from darc and fac, particularly for forbidden transitions, are also discussed. Finally, discrepancies between the present results of effective collision strengths from the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions of KrXXXV.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ti XXI, V XXII, Cr XXIII and Mn XXIV. grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are listed for all the 49 levels of the above four ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.5K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, in particular for forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Resumo:
Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.
Resumo:
Astrophysics is driven by observations, and in the present era there are a wealth of state-of-the-art ground-based and satellite facilities. The astrophysical spectra emerging from these are of exceptional quality and quantity and cover a broad wavelength range. To meaningfully interpret these spectra, astronomers employ highly complex modelling codes to simulate the astrophysical observations. Important input to these codes include atomic data such as excitation rates, photoionization cross sections, oscillator strengths, transition probabilities and energy levels/line wavelengths. Due to the relatively low temperatures associated with many astrophysical plasmas, the accurate determination of electron-impact excitation rates in the low energy region is essential in generating a reliable spectral synthesis. Hence it is these atomic data, and the main computational methods used to evaluate them, which we focus on in this publication. We consider in particular the complicated open d- shell structures of the Fe-peak ions in low ionization stages. While some of these data can be obtained experimentally, they are usually of insufficient accuracy or limited to a small number of transitions.
Resumo:
Calculations of energy levels, radiative rates and lifetimes are reported for eight ions of tungsten, i.e. S-like (W LIX) to F-like (W LXVI). A large number of levels have been considered for each ion and extensive configuration interaction has been included among a range of configurations. For the calculations, the general-purpose relativistic atomic structure package (. grasp) has been adopted, and radiative rates (as well as oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons have been made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the flexible atomic code (. fac).
Resumo:
Energies and lifetimes are reported for the eight Br-like ions with 43≤Z≤50, namely Tc IX, Ru X, Rh XI, Pd XII, Ag XIII, Cd XIV, In XV, and Sn XVI. Results are listed for the lowest 375 levels, which mostly belong to the 4s24p5, 4s24p44ℓ, 4s4p6,4s24p45ℓ, 4s24p34d2, 4s4p54ℓ, and 4s4p55ℓ configurations. Extensive configuration interaction among 39 configurations (generating 3990 levels) has been considered and the general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations. Radiative rates are listed for all E1, E2, M1, and M2 transitions involving the lowest 375 levels. Previous experimental and theoretical energies are available for only a few levels of three, namely Ru X, Rh XI and Pd XII. Differences with the measured energies are up to 4% but the present results are an improvement (by up to 0.3 Ryd) in comparison to other recently reported theoretical data. Similarly for radiative rates and lifetimes, prior results are limited to those involving only 31 levels of the 4s24p5, 4s24p44d, and 4s4p6 configurations for the last four ions. Moreover, there are generally no discrepancies with our results, although the larger calculations reported here differ by up to two orders of magnitude for a few transitions.
Resumo:
Calculations of energy levels, radiative rates and lifetimes are reported for 17 F-like ions with 37≤Z≤53. For brevity, results are only presented among the lowest 113 levels of the 2s22p5, 2s2p6, 2s22p43ℓ, 2s2p53ℓ, and 2p63ℓ configurations, although the calculations have been performed for up to 501 levels in each ion. The general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations, and radiative rates (along with oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons are made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the Flexible Atomic Code (fac), for up to 72 259 levels. Limited previous results are available for radiative rates for comparison purposes, and no large discrepancy is observed for any transition and/or ion.
Resumo:
In a recent paper [Pramana - J. Phys. 64, 129 (2005)] results have been presented for electron impact excitation collision strengths for transitions among the fine-structure levels of the 2s(2)2p(6) and 2s(2)2p(5)3s configurations of Ni XIX. In this paper we demonstrate through an independent calculation with the relativistic R-matrix code that those results are unreliable and the conclusions drawn are invalid.
Resumo:
Effective collision strengths for transitions among the lowest 97 fine-structure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(2), 3s3p(3), 3s(2)3p3d, 3p(4), 3s3p(2)3d and 3s(2)3d(2) configurations of Fe XIII have been calculated using the fully relativistic Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2004). Resonances have been resolved in the threshold region, and results are reported over a wide electron temperature range up to log T-e = 6.8 K. Comparisons are made with the earlier available R-matrix results of Gupta & Tayal (1998), and the accuracy of the data is assessed.
Resumo:
Collision strengths for 4005 transitions among the lowest 90 levels of the (1s(2)2s(2)2p(6)) 3s(2)3p(5), 3s3p(6), 3s(2)3p(4)3d, 3s3p(5)3d and 3s(2)3p(3)3d(2) configurations of Fe X have been calculated using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant, over a wide energy range up to 210 Ryd. Resonances have been resolved in the threshold region, and effective collision strengths have been obtained over a wide temperature range up to 107 K. The present calculations should represent a significant improvement ( in both range and accuracy) over the earlier available results of Bhatia & Doschek and Pelan & Berrington. Based on several comparisons, the accuracy of our data is assessed to be better than 20%, for a majority of transitions.
Resumo:
Radiative rates for electric dipole (E I), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 60 fine-structure levels of the (1s(2)) 2S(2)2p(5), 2s2p(6), and 2S(2)2p(4)3l configurations of F-like Mo XXXIV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 3200Ry, using the Dirac Atomic R-matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates and excitation rates are presented for all transitions, and for collision strengths for transitions from the lowest three levels to the higher lying levels. The accuracy of the present data is assessed to be similar to 20%.
Resumo:
Collision strengths for transitions among the lowest 48 fine- structure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(4), 3s3p(5), 3s(2)3p(3)3d and 3p(6) configurations of Fe XI have been calculated using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Results are tabulated at energies above thresholds in the range 10 less than or equal to E less than or equal to 100 Ry, although resonances have been resolved in a fine energy mesh in the thresholds region. Effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are also tabulated over a wide electron temperature range below 5 x 10(6) K. Comparisons with other available results are made, and the accuracy of the present data is assessed.
Resumo:
Collision strengths for transitions among the energetically lowest 53 fine-structure levels belonging to the (1s(2)2s(2)2p(6)) 3l(2), 3l3l', 3s4l and 3p4s configurations of Fe XV are computed, over an electron energy range below 160 Ryd, using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron energies, have also been calculated. These results of effective collision strengths are tabulated for all 1378 inelastic transitions over a wide temperature range of 10(5) to 10(7) K. Comparisons are also made with other R-matrix calculations and the accuracy of the results is assessed.