198 resultados para Buccal nerve
Resumo:
Purpose: To examine the influence of continuing administration of sevoflurane or isoflurane during reversal of rocuronium induced neuromuscular block with neostigmine. Methods: One hundred and twenty patients, divided into three equal groups, were randomly allocated to maintenance of anesthesia with sevoflurane, isoflurane or propofol. Neuromuscular block was induced with rocuronium and monitored using train-of-four (TOF) stimulation of the ulnar nerve and recording the force of contraction of the adductor pollicis muscle. Neostigmine was administered when the first response in TOF had recovered to 25%. At this time the volatile agent administration was stopped or propofol dosage reduced in half the patients in each group (n = 20 in each group). The times to attain TOF ratio of 0.8, and the number of patients attaining this end point within 15 min were recorded. Results: The times (mean ± SD) to recovery of the TOF ratio to 0.8 were 12.0 ± 5.5 and 6.8 ± 2.3 min in the sevoflurane continued and sevoflurane stopped groups, 9.0 ± 8.3 and 5.5 ± 3.0 min in the isoflurane continued and isoflurane stopped groups, and 5.2 ± 2.8 and 4.7 ±1.5 min in the propofol continued and propofol stopped groups (P <0.5- 01). Only 9 and 15 patients in the sevoflurane and isoflurane continued groups respectively had attained a TOF ratio of 0.8 within 15 min (P <0.001 for sevoflurane). Conclusions: The continued administration of sevoflurane, and to a smaller extent isoflurane, results in delay in attaining adequate antagonism of rocuronium induced neuromuscular block.
Resumo:
Cholinergic, serotoninergic and neuropeptidergic components of the nervous system were examined and compared in the progenetic metacercaria and adult gasterostome trematode, Bucephaloides gracilescens in order to provide baseline information on neuronal control of the musculature involved in egg-assembly. Enzyme cytochemistry and indirect immunocytochemical techniques interfaced with confocal scanning laser microscopy demonstrated all three classes of neuroactive substance throughout the central and peripheral nervous systems. A comparable orthogonal arrangement of the central nervous system (CNS) and peripheral array of nerve plexuses was observed in both metacercaria and adult. Staining patterns for cholinergic and peptidergic substances showed significant overlap, while the serotoninergic system was confined to a separate set of neurons. Immunostaining for FMRFamide-related peptides (FaRPs) was strong in the CNS and peripheral innervation to the attachment apparatus of metacercaria and adult but was only found in the innervation of the ootype in ovigerous adults, implicating FaRPs in neuronal control of the muscle of the female reproductive tract during egg-assembly.
Resumo:
To date, 9 FMRFamide-related peptides (FaRPs) have been structurally characterised from Caenorhabditis elegans. Radioimmunometrical screening of an ethanolic extract of C. elegans revealed the presence of two additional FaRPs that were purified by reverse-phase HPLC and subjected to Edman degradation analysis and gas-phase sequencing. Unequivocal primary structures for the two FaRPs were determined as Ala-Ala-Asp-Gly-Ala-Pro-Leu-Ile-Arg-Phe-NH2 and Ser-Val-Pro-Gly-Val-Leu-Arg-Phe-NH2. Using MALDI-TOF mass. spectrometry, the molecular masses of the peptides were found to be 1032 Da (MH) and 875 Da (MH)(+), respectively. Two copies of AADGAPLIRFamide are predicted to be encoded on the precursor gene termed flp-13, while one copy of SVPGVLRFamide is located on flp-18. Synthetic replicates of the peptides were tested on Ascaris suum somatic muscle to assess bioactivity. ADDGAPLIRFamide had inhibitory effects on A. suum muscle strips, which occurred over a range of concentrations from a threshold for activity of 10 nM to 10 muM. SVPGVLRFamide was excitatory on A. suum somatic musculature from a threshold concentration for activity of 1 nM to 10 muM. The inhibitory and excitatory effects of AADGAPLIRFamide and SVPGVLRFamide, respectively, were the same for dorsal and ventral muscle strips as well as innervated and denervated preparations, suggesting that these physiological effects are not nerve cord dependent. Addition of ADDGAPLIRFamide (10 muM) to muscle strips preincubated in high-K+ and -Ca2+-free medium resulted in a normal inhibitory response. Peptide addition to muscle strips preincubated in Cl--free medium showed no inhibitory response, suggesting that the inhibitory response of the peptide may be chloride mediated. A normal excitatory response was noted following the addition of 10 muM SVPGVLRFamide to muscle strips preincubated in high-K+, Ca2+- and Cl--free media. (C) 2001 Academic Press.
Resumo:
In order to broaden the information about the organisation of the nervous system in taxon Acoela, an immunocytochemical study of an undetermined Acoela from Cape Kartesh, Faerlea glomerata, Avagina incola and Paraphanostoma crassum has been performed. Antibodies to 5-HT and the native flatworm neuropeptide GYIRFamide were used. As in earlier studies, the pattern of 5-HT immunoreactivity revealed an anterior structure composed mainly of commissures, a so-called commissural brain. Three types of brain shapes were observed. No regular orthogon was visualised. GYIRFamide immunoreactive cell clusters were observed peripherally to the 5-HT immunoreactive commissural brain. Staining with anti-GYIRFamide revealed more nerve processes than did staining with anti-FMRFamide. As no synapomorphies were found in the organisation of the nervous system of the Acoela and that of the Platyhelminthes, the results support the view that the Acoela is not a member of the Platyhelminthes. (C) 2001 Harcourt Publishers Ltd.
Resumo:
Diplozoidae monogeneans are fish-gill ectoparasites comprising 2 individuals fused in so-called permanent copula. This unique situation occurs when 2 larvae (diporpae) make contact on the host gill, such that their union triggers maturation into an individual adult worm. The present study examined paired stages of Eudiplozoon nipponicum microscopically to ascertain whether somatic fusion involves neural connectivity between these 2 heterogenic larvae. Neuronal pathways were demonstrated in whole-mount preparations of the worm, using indirect immunocytochemical techniques interfaced with confocal scanning laser microscopy for peptidergic and serotoninergic innervations and enzyme cytochemical methodology and light microscopy for cholinergic components. Elements of the central nervous systems of paired worms are connected by commissures the region of fusion so that the 2 systems are in structural continuity. Interindividual connections were most apparent between corresponding ventral nerve cords. All 3 classes of neuronal mediators were identified throughout both central and peripheral connections of the 2 nervous systems. The anatomical complexity and apparent plasticity of the diplozoon nervous system suggest that it has a pivotal role not only in motility, feeding, and reproductive behaviors but also in the events of larval pairing and somatic fusion.
Resumo:
Investigations of queen, worker and male bumble bees (Bombus terrestris) showed that all individuals became infected with Nosema bombi. Infections were found in Malpighian tubules, thorax muscles, fat body tissue and nerve tissue, including the brain. Ultrastructural studies revealed thin walled emptied spores in host cell cytoplasm interpreted as autoinfective spores, besides normal spores (environmental spores) intended for parasite transmission between hosts. The nucleotide sequence of the gene coding for the small subunit rRNA (SSU-rRNA) from Microsporidia isolated from B. terrestris, B. lucorum, and B. hortorum were identical, providing evidence that N. bombi infects multiple hosts. The sequence presented here (GenBank Accession no AY008373) is different from an earlier submission to GenBank (Accession no U26158) of a partial sequence of the same gene based on material collected from B. terrestris. It still remains to be investigated if there is species diversity among Microsporidia found in bumble bees.
Resumo:
Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (MI); isometric contractions at 20% of MVC: and PAS only ( 14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 Prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.
Resumo:
Aim To determine the distribution of the NPY Y1 receptor in carious and noncarious human dental pulp tissue using immunohistochemistry. A subsidiary aim was to confirm the presence of the NPY Y1 protein product in membrane fractions of dental pulp tissue from carious and noncarious teeth using western blotting. Methodology Twenty two dental pulp samples were collected from carious and noncarious extracted teeth. Ten samples were processed for immunohistochemistry using a specific antibody to the NPY Y1 receptor. Twelve samples were used to obtain membrane extracts which were electrophoresed, blotted onto nitrocellulose and probed with NPY Y1 receptor antibody. Kruskal-Wallis one-way analysis of variance was employed to test for overall statistical differences between NPY Y1 levels in noncarious, moderately carious and grossly carious teeth. Results Neuropeptide Y Y1 receptor immunoreactivity was detected on the walls of blood vessels in pulp tissue from noncarious teeth. In carious teeth NPY Y1 immunoreactvity was observed on nerve fibres, blood vessels and inflammatory cells. Western blotting indicated the presence and confirmed the variability of NPY Y1 receptor protein expression in solubilised membrane preparations of human dental pulp tissue from carious and noncarious teeth. Conclusions Neuropeptide Y Y1 is expressed in human dental pulp tissue with evidence of increased expression in carious compared with noncarious teeth, suggesting a role for NPY Y1 in modulation of caries induced pulpal inflammation. © 2008 International Endodontic Journal.
Resumo:
Light and photosensitizer-mediated killing of many pathogens, termed photodynamic antimicrobial chemotherapy (PACT), has been extensively investigated in vitro. A wide range of organisms from the Gram-positive Staphylococcus aureus to the Gram-negative Pseudomonas aeruginosa have been proven to be susceptible to PACT. Multidrug-resistant strains are just as susceptible to this treatment as their naive counterparts. Both enveloped and non-enveloped viruses have demonstrated susceptibility in vitro, in addition to fungi and protozoa. Significantly, however, no clinical treatments based on PACT are currently licensed. This paper provides a comprehensive review of work carried out to date on delivery of photosensitizers for use in PACT, including topical, intranasal and oral/buccal delivery, as well as targeted delivery. We have also reviewed photo-antimicrobial surfaces. It is hoped that, through a rational approach to formulation design and subsequent success in small-scale clinical trials, more widespread use will be made of PACT in the clinic, to the benefit of patients worldwide. (C) 2009 Elsevier B.V. All rights reserved.
Anti-adherent and antifungal activities of surfactant-coated poly (ethylcyanoacrylate) nanoparticles
Resumo:
Application of non-drug-loaded poly(ethylcyanoacrylate) nanoparticles (NP) to buccal epithelial cells (BEC) imparted both anti-adherent and antifungal effects. NP prepared using emulsion polymerisation and stabilised using cationic, anionic and non-ionic surfactants decreased Candida albicans blastospore adhesion, an effect attributable to the peripheral coating of surfactant. Cetrimide and Pluronic (R) P 123 were shown to be most effective, producing mean percentage reductions in blastospore adherence of 52.7 and 37.0, respectively. Resultant zeta potential matched the polarity of the surfactant, with those stabilised using cetrimide being especially positive (+31.3 mV). Preparation using anionic surfactants was shown to be problematic, with low yield and wide particle size distribution. Evaluation of the antifungal effect of the peripheral coat was evaluated using zones of inhibition and viable counts assays. The former test revealed poor surfactant diffusion through agar, but did show evidence of limited kill. However, the latter method showed that cationic surfactants associated with NP produced high levels of kill, in contrast to those coated with anionic surfactants, where kill was not evident. Non-ionic surfactant-coated NP produced intermediate kill rates. Results demonstrate that surfactant-coated NP, particularly the cationic types, form the possible basis of a prophylactic formulation that primes the candidal target (BEC) against fungal adhesion and infection. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: Neuronal loss in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), correlates with permanent neurological dysfunction. Current MS therapies have limited the ability to prevent neuronal damage. Methods: We examined whether oral therapy with SRT501, a pharmaceutical grade formulation of resveratrol, reduces neuronal loss during relapsing-remitting EAE. Resveratrol activates SIRT1, an NAD-dependent deacetylase that promotes mitochondrial function. Results: Oral SRT501 prevented neuronal loss during optic neuritis, an inflammatory optic nerve lesion in MS and EAE. SRT501 also suppressed neurological dysfunction during EAE remission, and spinal cords from SRT501-treated mice had significantly higher axonal density than vehicle-treated mice. Similar neuroprotection was mediated by SRT1720, another SIRT1-activating compound; and sirtinol, an SIRT1 inhibitor, attenuated SRT501 neuroprotective effects. SIRT1 activators did not prevent inflammation. Conclusions: These studies demonstrate that SRT501 attenuates neuronal damage and neurological dysfunction in EAE by a mechanism involving SIRT1 activation. SIRT1 activators are a potential oral therapy in MS. © 2010 by North American Neuro-Ophthalmology Society.
Resumo:
PURPOSE: We investigated the 3-dimensional morphological arrangement of KIT positive interstitial cells of Cajal in the human bladder and explored their structural interactions with neighboring cells.MATERIALS AND METHODS: Human bladder biopsy samples were prepared for immunohistochemistry/confocal or transmission electron microscopy.RESULTS: Whole mount, flat sheet preparations labeled with anti-KIT (Merck, Darmstadt, Germany) contained several immunopositive interstitial cell of Cajal populations. A network of stellate interstitial cells of Cajal in the lamina propria made structural connections with a cholinergic nerve plexus. Vimentin positive cells of several morphologies were present in the lamina propria, presumably including fibroblasts, interstitial cells of Cajal and other cells of mesenchymal origin. Microvessels were abundant in this region and branched, elongated KIT positive interstitial cells of Cajal were found discretely along the vessel axis with each perivascular interstitial cell of Cajal associated with at least 6 vascular smooth muscle cells. Detrusor interstitial cells of Cajal were spindle-shaped, branched cells tracking the smooth muscle bundles, closely associated with smooth muscle cells and vesicular acetylcholine transferase nerves. Rounded, nonbranched KIT positive cells were more numerous in the lamina propria than in the detrusor and were immunopositive for anti-mast cell tryptase. Transmission electron microscopy revealed cells with the ultrastructural characteristics of interstitial cells of Cajal throughout the human bladder wall.CONCLUSIONS: The human bladder contains a network of KIT positive interstitial cells of Cajal in the lamina propria, which make frequent connections with a cholinergic nerve plexus. Novel perivascular interstitial cells of Cajal were discovered close to vascular smooth muscle cells, suggesting interstitial cells of Cajal-vascular coupling in the bladder. KIT positive detrusor interstitial cells of Cajal tracked smooth muscle bundles and were associated with nerves, perhaps showing a functional tri-unit controlling bladder contractility.