85 resultados para Azo Dyes
Resumo:
The evolution of the optical sensor for CO2 over the past two decades is outlined and illustrated through examples of luminescent-based sensors. The basic principles and design of the early 'wet covered' type sensor, in which a pH sensitive dye in an aqueous buffer is covered by a gas permeable, ion impermeable, membrane, are outlined. The gradual move from the 'wet covered' types of CO2 optical sensor to 'solid-water droplet' type sensors and then onto 'solid' sensors is charted. The basic design and principles of operation of the modern 'solid' optical sensor for P-CO2 is covered in some detail. Other sensing strategies outside the simple use of pH-sensitive dyes are also considered, most notably those based on luminescence lifetime measurements.
Resumo:
Azobenzene dyes derived from various anilines and aminothiaheterocycles ate-coupled with commercially important N,N-diethyl-m-toluidine (T series) and iv,N-diethyl-m-acetylaminoaniline (A series) are positively solvatochromic. The visible spectra of 16 pairs of derivatives have been measured in up to 22 solvents, and the transition energies related to Kamlet-Taft solvent polarity parameters. In general, A-series dyes are more bathochromic than their T-series counterparts in nonpolar solvents, consistent with colour chemistry tradition, However, in more dipolar solvents the more bathochromic T-series representatives unexpectedly become more bathochromic than their A-series partners. The relative solvatochromic shifts of the A and T series are related to their respective dipole moments, These in turn are distinguished by the effect of the anilide carbonyl group dipole moment, which is antiparallel to, and thus reduces, the dipole moment of the chromogen.
Resumo:
The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.
Resumo:
The basic theory behind conventional colourimetric and fluorimetric optical sensors for CO2 is examined and special attention is given to the effect on sensor response of the key parameters of initial base concentration and dye acid dissociation constant, K(D). Experimental results obtained in aqueous solution using a variety of different dyes and initial base concentrations are consistent with the predictions made by the theoretical model. A series of model-generated pK(D) versus %CO2 curves for different initial base concentrations allow those interested in constructing an optical CO2 sensor to readily identify the optimum dye/initial base combination for their sensor; the response of the sensor can be subsequently fine-tuned through a minor variation in the initial base concentration. The model and all its predictions appear also to apply to the new generation of plastic film CO2 sensors which have just been developed.
Resumo:
Allergic contact dermatitis is the most frequent occupational disease in industrialized countries. It is caused by CD8(+) T cell-mediated contact hypersensitivity (CHS) reactions triggered at the site of contact by a variety of chemicals, also known as weak haptens, present in fragrances, dyes, metals, preservatives, and drugs. Despite the myriad of potentially allergenic substances that can penetrate the skin, sensitization is relatively rare and immune tolerance to the substance is often induced by as yet poorly understood mechanisms. Here we show, using the innocuous chemical 2,4-dinitrothiocyanobenzene (DNTB), that cutaneous immune tolerance in mice critically depends on epidermal Langerhans cells (LCs), which capture DNTB and migrate to lymph nodes for direct presentation to CD8(+) T cells. Depletion and adoptive transfer experiments revealed that LCs conferred protection from development of CHS by a mechanism involving both anergy and deletion of allergen-specific CD8(+) T cells and activation of a population of T cells identified as ICOS(+)CD4(+)Foxp3(+) Tregs. Our findings highlight the critical role of LCs in tolerance induction in mice to the prototype innocuous hapten DNTB and suggest that strategies targeting LCs might be valuable for prevention of cutaneous allergy.
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints.
Methods: SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography.
Results: A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005).
Conclusion: Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients.
Resumo:
Pathogenic biotypes of Yersinia enterocolitica (serotypes O:3, O:8, O:9, and O:13), but not environmental biotypes (serotypes O:5, O:6, O:7,8, and O:7,8,13,19), increased their permeability to hydrophobic probes when they were grown at pH 5.5 or in EGTA-supplemented (Ca(2+)-restricted) media at 37 degrees C. A similar observation was also made when representative strains of serotypes O:8 and O:5 were tested after brief contact with human monocytes. The increase in permeability was independent of the virulence plasmid. The role of lipopolysaccharide (LPS) in this phenomenon was examined by using Y. enterocolitica serotype O:8. LPS aggregates of bacteria grown in acidic or EGTA-supplemented broth took up more N-phenylnaphthylamine than LPS aggregates of bacteria grown in standard broth and also showed a marked increase in acyl chain fluidity which correlated with permeability, as determined by measurements obtained in the presence of hydrophobic dyes. No significant changes in O-antigen polymerization were observed, but lipid A acylation changed depending on the growth conditions. In standard medium at 37 degrees C, there were hexa-, penta-, and tetraacyl lipid A forms, and the pentaacyl form was dominant. The amount of tetraacyl lipid A increased in EGTA-supplemented and acidic media, and hexaacyl lipid A almost disappeared under the latter conditions. Our results suggest that pathogenic Y. enterocolitica strains modulate lipid A acylation coordinately with expression of virulence proteins, thus reducing LPS packing and increasing outer membrane permeability. The changes in permeability, LPS acyl chain fluidity, and lipid A acylation in pathogenic Y. enterocolitica strains approximate the characteristics in Yersinia pseudotuberculosis and Yersinia pestis and suggest that there is a common outer membrane pattern associated with pathogenicity.
Resumo:
White rot fungi were collected from Chirinda and Chimanimani hardwood forests in Zimbabwe and studied with respect to growth temperature optima and dye decolorization. Temperature optima were found to vary (between 25-37 degreesC) amongst the isolates. The isolates were screened for their ability to degrade the polymeric dyes; blue dextran and Poly R478 and the triphenylmethane dyes; cresol red, crystal violet and bromophenol blue. Semi-quantitative determination of the hydrolytic enzyme activities possessed by the white rot fungi was determined using the API ZYM system. Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in the fungi were also determined. No LiP was detected in any of the isolates but all isolates showed manganese peroxidase and laccase activities. Time related decolorization studies and optimum pH determinations for Poly R478 degradation by the isolates were carried out in liquid cultures. The most significant rates of Poly R478 decolorization in liquid cultures were found with the following isolates: Trametes cingulata, Trametes versicolor, Trametes pocas, DSPM95 (a species to be identified), Datronia concentrica and Pyenoporus sanguineus. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
A new mesoporous carbon (MCSG60) was developed using an inexpensive commercial mesoporous silica gel as a template and sucrose as the carbon source. The surface area, porosity and density of the carbon were determined. The material possesses a high specific surface area and pore volume accessible for most typical aqueous pollutants. The adsorbent material was tested in a batch dye adsorption system. The behaviour of three reactive dyes adsorbed onto MCSG60 was evaluated (Naphthol Blue Black, NBB; Reactive Black 5, RB5; and Remazol Brilliant Blue R, RBBR). The maximum adsorption capacities obtained for the dyes were: 270. mg/g for NBB; 270. mg/g for RB5; and 280. mg/g for RBBR. Kinetic studies indicated that the adsorption process onto the mesoporous carbon was rapid and that equilibrium was reached in less than 1. h for all the dye systems investigated. Further batch experiments showed MCSG60 successfully adsorbed the dyes over a wide pH range and at low adsorbate concentration. The adsorption potential of MCSG60 for dye removal was further evaluated using a fixed-bed adsorption column. © 2013 Elsevier B.V.
Resumo:
Peeling the internal limiting membrane of the retina has become a very common procedure performed by vitreo-retinal surgeons. The combination of new microsurgical instrumentation with the availability of different dyes to stain this thin and transparent membrane has facilitated the performance of internal limiting membrane peeling, reducing the time and trauma associated with this maneuver. Internal limiting membrane peeling has been used to treat a variety of retinal pathologies, including full-thickness macular hole, epiretinal membrane, macular edema, vitreomacular traction syndrome, and Terson syndrome, among others. Although it appears that peeling the internal limiting membrane in these retinal conditions may be associated with better anatomical and visual outcomes following surgery, further evidence through randomized controlled clinical trials is still needed to guide the vitreo-retinal surgeon on the appropriate use of this surgical maneuver. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Diblock copolymer vesicles are tagged with pH-responsive Nile Blue-based labels and used as a new type of pH-responsive colorimetric/fluorescent biosensor for far-red and near-infrared imaging of live cells. The diblock copolymer vesicles described herein are based on poly(2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate) [PMPC-PDPA]: the biomimetic PMPC block is known to facilitate rapid cell uptake for a wide range of cell lines, while the PDPA block constitutes the pH-responsive component that enables facile vesicle self-assembly in aqueous solution. These biocompatible vesicles can be utilized to detect interstitial hypoxic/acidic regions in a tumor model via a pH-dependent colorimetric shift. In addition, they are also useful for selective intracellular staining of lysosomes and early endosomes via subtle changes in fluorescence emission. Such nanoparticles combine efficient cellular uptake with a pH-responsive Nile Blue dye label to produce a highly versatile dual capability probe. This is in marked contrast to small molecule dyes, which are usually poorly uptaken by cells, frequently exhibit cytotoxicity, and are characterized by intracellular distributions invariably dictated by their hydrophilic/hydrophobic balance.
Resumo:
A systematic study was undertaken to gain more insight into the mechanism of transdermal delivery of nanoencapsulated model dyes across microneedle (MN)-treated skin, a complex process not yet explored. Rhodamine B (Rh B) and fluorescein isothiocyanate (FITC) as model hydrophilic and hydrophobic small/medium-size molecules, respectively, were encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) and delivered through full thickness porcine skin pretreated with MN array. Permeation through MN-treated skin was affected by physicochemical characteristics of NPs and the encapsulated dyes. Dye flux was enhanced by smaller particle size, hydrophilicity, and negative zeta potential of NPs. Regarding encapsulated dyes, solubility at physiological pH and potential interaction with skin proteins proved to outweigh molecular weight as determinants of skin permeation. Data were verified using confocal laser scanning microscopy imaging. Findings coupled with the literature data are supportive of a mechanism involving influx of NPs, particularly of smaller size, deep into MN-created channels, generating depot dye-rich reservoirs. Molecular diffusion of the released dye across viable skin layers proceeds at a rate determined by its molecular characteristics. Data obtained provide mechanistic information of importance to the development of formulation strategies for more effective intradermal and transdermal MN-mediated delivery of nanoencapsulated therapeutic agents.
Resumo:
With most recent studies being focused on the development of
advanced chemical adsorbents, this paper investigates the possibility of
using two natural low-cost materials for selective adsorption. Multiadsorbent
systems containing tea waste and dolomite have been tested for
their effectiveness in the removal of copper and methylene blue from
aqueous solutions. The effects of contact time, solution pH and
adsorption isotherms on the sorption behaviour were investigated. The
Langmuir and Freundlich isotherms adequately described the adsorption of
copper ions and methylene blue by both materials in different systems.
The highest adsorption capacities for Cu and MB were calculated as 237.7
at pH 4.5 and 150.44 mg.g‒1 at pH 7 for DO and TW+DO respectively. Tea
waste (TW) and dolomite (DO) were characterized by Fourier transform
infrared spectroscopy, scanning electron microscopy and Energy dispersive
X-ray analysis. The removal of Cu and MB by dolomite was mainly via
surface complexation while physisorption was responsible for most of the
Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.
Resumo:
Chili powder is a globally traded commodity which has been found to be adulterated with Sudan dyes from 2003 onwards. In this study, chili powders were adulterated with varying quantities of Sudan I dye (0.1-5%) and spectra were generated using near infrared reflectance spectroscopy (NIRS) and Raman
spectroscopy (on a spectrometer with a sample compartment modified as part of the study). Chemometrics were applied to the spectral data to produce quantitative and qualitative calibration models and prediction statistics. For the quantitative models coefficients of determination (R2) were found to be
0.891-0.994 depending on which spectral data (NIRS/Raman) was processed, the mathematical algorithm used and the data pre-processing applied. The corresponding values for the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were found to be 0.208-0.851%
and 0.141-0.831% respectively, once again depending on the spectral data and the chemometric treatment applied to the data. Indications are that the NIR spectroscopy based models are superior to the models produced from Raman spectral data based on a comparison of the values of the chemometric
parameters. The limit of detection (LOD) based on analysis of 20 blank chili powders against each calibration model gave 0.25% and 0.88% for the NIR and Raman data, respectively. In addition, adopting a qualitative approach with the spectral data and applying PCA or PLS-DA, it was possible to discriminate
between adulterated chili powders from non-adulterated chili powders.