118 resultados para Automatic Calibration


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speeding up sequential programs on multicores is a challenging problem that is in urgent need of a solution. Automatic parallelization of irregular pointer-intensive codes, exempli?ed by the SPECint codes, is a very hard problem. This paper shows that, with a helping hand, such auto-parallelization is possible and fruitful. This paper makes the following contributions: (i) A compiler framework for extracting pipeline-like parallelism from outer program loops is presented. (ii) Using a light-weight programming model based on annotations, the programmer helps the compiler to ?nd thread-level parallelism. Each of the annotations speci?es only a small piece of semantic information that compiler analysis misses, e.g. stating that a variable is dead at a certain program point. The annotations are designed such that correctness is easily veri?ed. Furthermore, we present a tool for suggesting annotations to the programmer. (iii) The methodology is applied to autoparallelize several SPECint benchmarks. For the benchmark with most parallelism (hmmer), we obtain a scalable 7-fold speedup on an AMD quad-core dual processor. The annotations constitute a parallel programming model that relies extensively on a sequential program representation. Hereby, the complexity of debugging is not increased and it does not obscure the source code. These properties could prove valuable to increase the ef?ciency of parallel programming.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realising high performance image and signal processing
applications on modern FPGA presents a challenging implementation problem due to the large data frames streaming through these systems. Specifically, to meet the high bandwidth and data storage demands of these applications, complex hierarchical memory architectures must be manually specified
at the Register Transfer Level (RTL). Automated approaches which convert high-level operation descriptions, for instance in the form of C programs, to an FPGA architecture, are unable to automatically realise such architectures. This paper
presents a solution to this problem. It presents a compiler to automatically derive such memory architectures from a C program. By transforming the input C program to a unique dataflow modelling dialect, known as Valved Dataflow (VDF), a mapping and synthesis approach developed for this dialect can
be exploited to automatically create high performance image and video processing architectures. Memory intensive C kernels for Motion Estimation (CIF Frames at 30 fps), Matrix Multiplication (128x128 @ 500 iter/sec) and Sobel Edge Detection (720p @ 30 fps), which are unrealisable by current state-of-the-art C-based synthesis tools, are automatically derived from a C description of the algorithm.