158 resultados para Automated Reasoning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motivation for this paper is to present procedures for automatically creating idealised finite element models from the 3D CAD solid geometry of a component. The procedures produce an accurate and efficient analysis model with little effort on the part of the user. The technique is applicable to thin walled components with local complex features and automatically creates analysis models where 3D elements representing the complex regions in the component are embedded in an efficient shell mesh representing the mid-faces of the thin sheet regions. As the resulting models contain elements of more than one dimension, they are referred to as mixed dimensional models. Although these models are computationally more expensive than some of the idealisation techniques currently employed in industry, they do allow the structural behaviour of the model to be analysed more accurately, which is essential if appropriate design decisions are to be made. Also, using these procedures, analysis models can be created automatically whereas the current idealisation techniques are mostly manual, have long preparation times, and are based on engineering judgement. In the paper the idealisation approach is first applied to 2D models that are used to approximate axisymmetric components for analysis. For these models 2D elements representing the complex regions are embedded in a 1D mesh representing the midline of the cross section of the thin sheet regions. Also discussed is the coupling, which is necessary to link the elements of different dimensionality together. Analysis results from a 3D mixed dimensional model created using the techniques in this paper are compared to those from a stiffened shell model and a 3D solid model to demonstrate the improved accuracy of the new approach. At the end of the paper a quantitative analysis of the reduction in computational cost due to shell meshing thin sheet regions demonstrates that the reduction in degrees of freedom is proportional to the square of the aspect ratio of the region, and for long slender solids, the reduction can be proportional to the aspect ratio of the region if appropriate meshing algorithms are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porcine urine enzyme immunoassays for sulfamethazine and sulfadiazine have previously been employed as screening tests to predict the concentrations of the drugs in the corresponding tissues (kidneys), If a urine was found positive (> 800 ng ml(-1)) the corresponding kidney was then analysed by an enzyme immunoassay and, if found positive, a confirmatory analysis by HPLC was performed. Urine was chosen as the screening matrix since sulfonamides are mainly eliminated through this body fluid, However, after obtaining a number of false positive predictions, an investigation was carried out to assess the possibility of using an alternative body fluid which would act as a superior indicator of the presence of sulfonamides in porcine kidney, An initial study indicated that serum, plasma and bile could all be used as screening matrices. From these, bile was chosen as the preferred sample matrix and an extensive study followed to compare the efficiencies of sulfonamide positive bile and urine at predicting sulphonamide positive kidneys, Bile was found to be 17 times more efficient than urine at predicting a sulfamethazine positive kidney and 11 times more efficient at predicting a sulfadiazine positive kidney, With this enhanced performance of the initial screening test, the need for the costly and time consuming kidney enzyme immunoassay, prior to HPLC analysis, was eliminated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Screening for residues of anabolic steroids frequently requires extraction from tissues and fluids before analysis. Chemical procedures for these extractions can be complicated, expensive to perform and not ideal for the simultaneous extraction of analytes with different solubilities. Extraction by multi-immunoaffinity chromatography (MIAC) may be used as an alternative. Samples are passed through a column containing a range of antibodies immobilized on an inert support. The desired analytes are bound to their respective antibodies, washed and then eluted by a suitable solvent. The purified extracts can then be incorporated into the analytical tests, The analytes that can be extracted presently are alpha-nortestosterone, zeranol, trenbolone, diethylstilboestrol, boldenone and dexamethasone. Manually, the MIAC procedure is limited to about six columns per operator but bq automating the process using a robotic sample processor (RSP), 48 columns can be run simultaneously during the day or night. The RSP has also been adapted to transfer extracts and reagents on to ELISA plates. The automated system has proved to be a robust and reliable means of screening large numbers of samples for anabolic agents with minimal manual input

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
Background: Automated closed loop systems may improve adaptation of the mechanical support to a patient's ventilatory needs and
facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of
ventilation.

Objectives: To compare the duration of weaning from mechanical ventilation for critically ill ventilated adults and children when managed
with automated closed loop systems versus non-automated strategies. Secondary objectives were to determine differences
in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events.

Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2); MEDLINE (OvidSP) (1948 to August 2011); EMBASE (OvidSP) (1980 to August 2011); CINAHL (EBSCOhost) (1982 to August 2011); and the Latin American and Caribbean Health Sciences Literature (LILACS). In addition we received and reviewed auto-alerts for our search strategy in MEDLINE, EMBASE, and CINAHL up to August 2012. Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles.

Selection criteria: We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning
strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an intensive care unit (ICU).

Data collection and analysis: Two authors independently extracted study data and assessed risk of bias. We combined data into forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria.

Main results: Pooled data from 15 eligible trials (14 adult, one paediatric) totalling 1173 participants (1143 adults, 30 children) indicated that automated closed loop systems reduced the geometric mean duration of weaning by 32% (95% CI 19% to 46%, P =0.002), however heterogeneity was substantial (I2 = 89%, P < 0.00001). Reduced weaning duration was found with mixed or
medical ICU populations (43%, 95% CI 8% to 65%, P = 0.02) and Smartcare/PS™ (31%, 95% CI 7% to 49%, P = 0.02) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (17%, 95% CI 8% to 26%) and ICU length of stay (LOS) (11%, 95% CI 0% to 21%). There was no difference in mortality rates or hospital LOS. Overall the quality of evidence was high with the majority of trials rated as low risk.

Authors' conclusions: Automated closed loop systems may result in reduced duration of weaning, ventilation, and ICU stay. Reductions are more
likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized
controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.