116 resultados para Aquatic ecology.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent climatic change has been recorded across the globe. Although environmental change is a characteristic feature of life on Earth and has played a major role in the evolution and global distribution of biodiversity, predicted future rates of climatic change, especially in temperature, are such that they will exceed any that has occurred over recent geological time. Climate change is considered as a key threat to biodiversity and to the structure and function of ecosystems that may already be subject to significant anthropogenic stress. The current understanding of climate change and its likely consequences for the fishes of Britain and Ireland and the surrounding seas are reviewed through a series of case studies detailing the likely response of several marine, diadromous and freshwater fishes to climate change. Changes in climate, and in particular, temperature have and will continue to affect fish at all levels of biological organization: cellular, individual, population, species, community and ecosystem, influencing physiological and ecological processes in a number of direct, indirect and complex ways. The response of fishes and of other aquatic taxa will vary according to their tolerances and life stage and are complex and difficult to predict. Fishes may respond directly to climate-change-related shifts in environmental processes or indirectly to other influences, such as community-level interactions with other taxa. However, the ability to adapt to the predicted changes in climate will vary between species and between habitats and there will be winners and losers. In marine habitats, recent changes in fish community structure will continue as fishes shift their distributions relative to their temperature preferences. This may lead to the loss of some economically important cold-adapted species such as Gadus morhua and Clupea harengus from some areas around Britain and Ireland, and the establishment of some new, warm-adapted species. Increased temperatures are likely to favour cool-adapted (e.g. Perca fluviatilis) and warm-adapted freshwater fishes (e.g. roach Rutilus rutilus and other cyprinids) whose distribution and reproductive success may currently be constrained by temperature rather than by cold-adapted species (e.g. salmonids). Species that occur in Britain and Ireland that are at the edge of their distribution will be most affected, both negatively and positively. Populations of conservation importance (e.g. Salvelinus alpinus and Coregonus spp.) may decline irreversibly. However, changes in food-web dynamics and physiological adaptation, for example because of climate change, may obscure or alter predicted responses. The residual inertia in climate systems is such that even a complete cessation in emissions would still leave fishes exposed to continued climate change for at least half a century. Hence, regardless of the success or failure of programmes aimed at curbing climate change, major changes in fish communities can be expected over the next 50 years with a concomitant need to adapt management strategies accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: After a volcano erupts, a lake may form in the cooled crater and become an isolated aquatic ecosystem. This makes fishes in crater lakes informative for understanding sympatric evolution and ecological diversification in barren environments. From a geological and limnological perspective, such research offers insight about the process of crater lake ecosystem establishment and speciation. In the present study we use genetic and coalescence approaches to infer the colonization history of Midas cichlid fishes (Amphilophus cf. citrinellus) that inhabit a very young crater lake in Nicaragua-the ca. 1800 year-old Lake Apoyeque. This lake holds two sympatric, endemic morphs of Midas cichlid: one with large, hypertrophied lips (~20% of the total population) and another with thin lips. Here we test the associated ecological, morphological and genetic diversification of these two morphs and their potential to represent incipient speciation.
Results: Gene coalescence analyses [11 microsatellite loci and mitochondrial DNA (mtDNA) sequences] suggest that crater lake Apoyeque was colonized in a single event from the large neighbouring great lake Managua only about 100 years ago. This founding in historic times is also reflected in the extremely low nuclear and mitochondrial genetic diversity in Apoyeque. We found that sympatric adult thin- and thick-lipped fishes occupy distinct ecological trophic niches. Diet, body shape, head width, pharyngeal jaw size and shape and stable isotope values all differ significantly between the two lip-morphs. The eco-morphological features pharyngeal jaw shape, body shape, stomach contents and stable isotopes (d15N) all show a bimodal distribution of traits, which is compatible with the expectations of an initial stage of ecological speciation under disruptive selection. Genetic differentiation between the thin- and thick-lipped population is weak at mtDNA sequence (FST = 0.018) and absent at nuclear microsatellite loci (FST < 0.001).
Conclusions: This study provides empirical evidence of eco-morphological differentiation occurring very quickly after the colonization of a new and vacant habitat. Exceptionally low levels of neutral genetic diversity and inference from coalescence indicates that the Midas cichlid population in Apoyeque is much younger (ca. 100 years or generations old) than the crater itself (ca. 1 800 years old). This suggests either that the crater remained empty for many hundreds of years after its formation or that remnant volcanic activity prevented the establishment of a stable fish population during the early life of the crater lake. Based on our findings of eco-morphological variation in the Apoyeque Midas cichlids, and known patterns of adaptation in Midas cichlids in general, we suggest that this population may be in a very early stage of speciation (incipient species), promoted by disruptive selection and ecological diversification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assessed nearshore, marine ecosystem function around Trinidad and Tobago (TT). The coastline of TT is highly complex, bordered by the Atlantic Ocean, the Caribbean Sea, the Gulf of Paria and the Columbus Channel, and subject to local terrestrial runoff and regional riverine inputs (e.g. the Orinoco and Amazon rivers). Coastal organisms can assimilate energy from allochthonous and autochthonous Sources, We assessed whether stable isotopes delta C-13 and delta N-15 Could be used to provide a rapid assessment of trophic interactions in primary consumers around the islands. Filter-feeding (bivalves and barnacles) and grazing organisms (gastropods and chitons) were collected from 40 marine sites during the wet season. The flesh of organisms was analysed for delta C-13 and delta N-15. Results indicate significant variation in primary consumers (by feeding guild and sampling zone). This variation was linked to different energy Sources being assimilated by consumers. Results suggest that offshore production is fuelling intertidal foodwebs; for example, a depleted delta C-13 signature in grazers from the Gulf of Paria, Columbus Channel and the Caribbean and Atlantic coastline of 9 Tobago indicates that carbon with an offshore origin (e.g. phytoplankton and dissolved organic matter) is more important than benthic or littoral algae (luring the wet season. Results also confirm findings from other studies indicating that much of the coastline is subject to Cultural eutrophication. This Study revealed that ecosystem function is spatially variable around the coastline of TT, This has clear implications for marine resource management, as a single management approach is unlikely to be successful at a national level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitats composed of living 'ecosystem engineers', such as mussels, are subject to direct and indirect interactions with organisms that live among them. These interactions may affect the presence and structure of habitat, and hence, the associated taxa. We examined the direct effects of epibiotic algae on the Survival, biomass and recruitment of mussels (Mytilits L.) on the west coast of Ireland. A field experiment showed that the presence of epibiotic fucoid algae reduced the likelihood of survival of mussels during storms. We also found that the strength of attachment of mussels did not increase in the presence of epibionts. Another in situ experiment revealed that the presence of ephemeral epibiotic algal mats had no effect on the biomass of host mussels, suggesting no effect on mussel growth or production. The abundance of small mussels (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sediment succession from Hojby So, a lake in eastern Denmark, covering the time period 9400-7400 cal yr BP was studied using high-resolution geochemistry, magnetic susceptibility, pollen, macrofossil, diatom, and algal pigment analysis to investigate responses of the terrestrial and aquatic ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250-8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.2 ka cold event as registered in the Greenland ice cores. At Hojby So, the climate anomaly appears to have started 200-250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500 cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP. (C) 2009 University of Washington. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographically referenced databases of species records are becoming increasingly available. Doubts over the heterogeneous quality of the underlying data may restrict analyses of such collated databases. We partitioned the spatial variation in species richness of littoral algae and molluscs from the UK National Biodiversity Network database into a smoothed mesoscale component and a local component. Trend surface analysis (TSA) was used to define the mesoscale patterns of species richness, leaving a local residual component that lacked spatial autocorrelation. The analysis was based on 10 km grid squares with 115035 records of littoral algae (729 species) and 66879 records of littoral molluscs (569 species). The TSA identified variation in algal and molluscan species richness with a characteristic length scale of approximately 120 km. Locations of the most species-rich grid squares were consistent with the southern and western bias of species richness in the UK marine flora and fauna. The TSA also identified areas which showed significant changes in the spatial pattern of species richness: breakpoints, which correspond to major headlands along the south coast of England. Patterns of algal and molluscan species richness were broadly congruent. Residual variability was strongly influenced by proxies of collection effort, but local environmental variables including length of the coastline and variability in wave exposure were also important. Relative to the underlying trend, local species richness hotspots occurred on all coasts. While there is some justification for scepticism in analyses of heterogeneous datasets, our results indicate that the analysis of collated datasets can be informative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limpets, predominantly Patella vulgata, have been associated with damaged or receding canopies of Ascophyllum nodosum. Although damage results from limpet grazing, the benefits that limpets gain from this behaviour are unclear as A. nodosum is thought to be well defended from grazers by anti-herbivore compounds. In the present study, R vulgata individuals were enclosed at densities between 80 and 320 m(-2) at 2 sites within Strangford Lough, Northern Island. Limpet growth and limpet survival were compared between unsubsidised controls and treatments in which limpet diets were subsidised by fronds of A. nodosum. When subsidised, limpet residual growth rates were significantly higher and mortality was lower than in unsubsidised control treatments. Individual limpets consumed a similar amount of A. nodosum regardless of limpet density. Higher densities of limpets, therefore, consumed more A. nodosum per replicate. The effects of A. nodosum in maintaining limpet densities could resonate through sheltered rocky communities. The importance of a macroalgal subsidy in supporting limpet populations may have been underestimated or overlooked in earlier studies. Therefore, the extensive and productive macroalgal canopies that characterise many sheltered temperate rocky shores could be more sensitive to increased limpet abundances than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epibiotic foraminifers selectively settle on the most food-rich area of the host substrate, even when the species acts as a facultative ectoparasite in later life stages. In 398 specimens examined of the deep-sea chiton Leptochiton arcticus from Iceland, 46% show evidence of infestation by foraminifers, with many showing extensive shell damage from present and past bioeroding epibionts. Disturbances to the inner layer of the host shell are indicative of parasitism, as evidenced both by wound healing calcification and protrusions of the foraminiferan tubules. The epibionts employ different feeding strategies at different stages of their life cycle, taking advantage of nutrient availability from the posterior respiration currents and excrement of the chitons as juveniles, and feeding parasitically as adults. Epibiont persistence on individual hosts-through successive generations, or long-term continuous bioerosion by epibionts-allow larger adult parasitic foraminifers of Hyrrokkin sarcophaga to penetrate the thick tail valve of a chiton and feed parasitically on the host tissue. The proportion of chitons infested increases with host size, indicating that epibionts are accumulated through a chiton's life, seemingly without major detriment to host survivorship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algal blooms caused by cyanobacteria are characterized by two features with different time scales: one is seasonal outbreak and collapse of a bloom and the other is diurnal vertical migration. Our two-component mathematical model can simulate both phenomena, in which the state variables are nutrients and cyanobacteria. The model is a set of one-dimensional reaction-advection-diffusion equations, and temporal changes of these two variables are regulated by the following five factors: (1) annual variation of light intensity, (2) diurnal variation of light intensity, (3) annual variation of water temperature, (4) thermal stratification within a water column and (5) the buoyancy regulation mechanism. The seasonal change of cyanobacteria biomass is mainly controlled by factors, (1), (3) and (4), among which annual variations of light intensity and water temperature directly affect the maximum growth rate of cyanobacteria. The latter also contributes to formation of the thermocline during the summer season. Thermal stratification causes a reduction in vertical diffusion and largely prevents mixing of both nutrients and cyanobacteria between the epilimnion and the hypolimnion. Meanwhile, the other two factors, (2) and (5), play a significant role in diurnal vertical migration of cyanobacteria. A key mechanism of vertical migration is buoyancy regulation due to gas-vesicle synthesis and ballast formation, by which a quick reversal between floating and sinking becomes possible within a water column. The mechanism of bloom formation controlled by these five factors is integrated into the one-dimensional model consisting of two reaction-advection-diffusion equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyzed a mathematical model of algal-grazer dynamics, including the effect of colony formation, which is an example of phenotypic plasticity. The model consists of three variables, which correspond to the biomasses of unicellular algae, colonial algae, and herbivorous zooplankton. Among these organisms, colonial algae are the main components of algal blooms. This aquatic system has two stable attractors, which can be identified as a zooplankton-dominated (ZD) state and an algal-dominated (AD) state, respectively. Assuming that the handling time of zooplankton on colonial algae increases with the colonial algae biomass, we discovered that bistability can occur within the model system. The applicability of alternative stable states in algae-grazer dynamics as a framework for explaining the algal blooms in real lake ecosystems, thus, seems to depend on whether the assumption mentioned above is met in natural circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified abstract version of the Comprehensive Aquatic Simulation Model (CASM) is found to exhibit three types of folded bifurcations due to nutrient loading. The resulting bifurcation diagrams account for nonlinear dynamics such as regime shifts and cyclic changes between clear-water state and turbid state that have actually been observed in real lakes. In particular, pulse-perturbation simulations based on the model presented suggest that temporal behaviors of real lakes after biomanipulations can be explained by pulse-dynamics in complex ecosystems, and that not only the amplitude (manipulated abundance of organisms) but also the phase (timing) is important for restoring lakes by biomanipulation. Ecosystem management in terms of possible irreversible changes in ecosystems induced by regime shifts is also discussed. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An abstract version of the comprehensive aquatic simulation model (CASM) is found to exhibit bistability under intermediate loading of nutrient input, supporting the alternative-stable-states theory and field observations for shallow lakes. Our simulations of biomanipulations under the bistable conditions reveal that a reduction in the abundance of zooplanktivorous fish cannot switch the system from a turbid to a clear state. Rather, a direct reduction of phytoplankton and detritus was found to be most effective to make this switch in the present model. These results imply that multiple manipulations may be effective for practical restorations of lakes. We discuss the present results of biomanipulations in terms of ecological resilience in multivariable systems or natural systems.