64 resultados para Apical periodontal cyst
Resumo:
Objectives: To determine whether neuropeptide Y (NPY) is present in gingival crevicular fluid (GCF) in both periodontal health and disease and to study the relationship of NPY with periodontal inflammation. Methods: GCF samples (30 s) were collected from one site with both pocket depth (>4mm) and loss of periodontal attachment (>4mm) in 20 patients with chronic periodontitis (mean age 41.4, SD 9.6 yrs; 10 m, 10 f). GCF was also collected from clinically healthy sites (< 3mm, no bleeding on probing) in 20 subjects with no periodontitis (mean age 37.4, SD 11.7; 10 m, 10 f). GCF was collected using the periopaper strip method, diluted in 500 ul of phosphate-buffered saline and stored at –70°C. Samples were analysed in duplicate for NPY by radioimmunoassay. NPY levels were compared using the Mann-Whitney test. Results: Measurable NPY was present in all the GCF samples collected from healthy subjects. NPY was below the level of detection in 4 (20%) of the diseased subjects. There was considerable variability in the amount of NPY collected from both groups. There were no differences between the levels of NPY measured in males compared with females in either the healthy or diseased groups. Significantly more (P< 0.0001) NPY (pg) was collected from healthy subjects (Median 165, IQR 80; mean 161, SD 64) than diseased subjects (Median 37.5, IQR 56.3; mean 39.8, SD 35.1). There was more variability in the NPY concentration (pg/ul) which was also significantly higher in healthy (Median 575.7, IQR 562.3; mean 645.7, SD 416.7) compared with diseased subjects (Median 43.6, IQR 117.4; mean 96.4, SD 124.5). Conclusions: It is concluded that the levels of NPY in GCF sampled
Resumo:
Introduction: As a result of chronic inflammation during periodontal disease the junctional epithelium becomes micro-ulcerated. The inflammatory process is mediated by both bacterial and host cell products. Host defence peptides such as defensins, secretory leucocyte protease inhibitor (SLPI) and the sole human cathelicidin, LL-37, are secreted by both periodontal cells and neutrophils into gingival crevicular fluid (GCF). They have the ability to modulate the immune response in periodontitis and are thought to have a potential role in periodontal wound healing. Objectives: The aims of this study were to determine the role of LL-37 in the production of Interleukin (IL)-8, IL-6, hepatocyte growth factor (HGF) and basic-fibroblast growth factor (bFGF) by gingival fibroblasts. The role of LL-37 in modulating total matrix metalloproteinase (MMP) activity and expression of tissue inhibitors of metalloproteinase (TIMP)-1 and -2 by gingival fibroblasts was also investigated. Methods: Primary gingival fibroblasts were co-cultured with concentrations of LL-37 (1, 5 and 10µg/ml) for 24 hours and their supernatants tested for levels of IL-8 and IL-6, HGF, bFGF, TIMP-1 and TIMP-2 by ELISA. Rates of MMP turnover in the supernatants were tested by fluorogenic assay using fluorescence resonance energy transfer (FRET) peptide substrates. Cytotoxicity was measured by MTT assay. Statistical significance was measured using the independent t-test and p<0.05 was considered significant. Results: LL-37 significantly upregulated levels of IL-8, IL-6, HGF, bFGF and TIMP-1 (p<0.05) in a dose-dependent fashion. LL-37 significantly decreased the total MMP activity (p<0.05). None of the LL-37 concentrations tested were cytotoxic to gingival fibroblasts. Conclusion: These results indicate that LL-37 is involved in periodontal wound healing. LL-37 increased levels of proinflammatory cytokines and increased levels of growth factors involved in re-epithelialisation. LL-37 has the ability to regulate remodelling of the periodontium by controlling MMP overactivity both directly and by stimulating production of inhibitors by gingival fibroblasts.
Resumo:
Background: Periodontal ligament (PDL) cells are exposed to physical forces in vivo in response to mastication, parafunction, speech and orthodontic tooth movement. Although it has been shown that PDL cells perceive and respond directly to mechanical stimulation, the nature of the ion channels that mediate this mechanotransduction remain to be fully elucidated. The transient receptor potential (TRP) superfamily of ion channels is believed to play a critical role in sensory physiology, where they act as transducers for thermal, chemical and mechanical stimuli. Recent studies have shown that members of the vanilloid (TRPV) and ankyrin (TRPA) subfamilies encode mechanosensitive TRPs. The vanilloid family member TRPV4 is one such non selective calcium permeable cationic channel which has been shown to be activated by chemical ligands, hypotonicity, and mechanical stimuli. Objectives: The objective of the current study was to investigate functional expression of TRPV4 in cultured human PDL cells. Methods: Human PDL cells were grown in Dulbecco's Modified Eagle Medium with L-glutamine supplemented with 10% fetal bovine serum (FBS), 100UI/ml penicillin and 100μg/ml streptomycin. Cells in passage 4-6 were used in all experiments. TRPV4 functional expression was determined using ratiometric calcium imaging. Cultured cells were loaded with intracellular Ca2+ probe fura-2 and cells were then stimulated with the TRPV4 agonists, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), GSK1016790A or hypotonic solution. The TRPV4 antagonist RN 1734 was used to block the corresponding agonist responses. Results: PDL fibroblasts responded to application of TRPV4 agonists and hypotonic stimuli by an increase in intracellular calcium which was attenuated in the presence of the TRPV4 antagonist. Conclusions: We have shown for the first time the functional expression of the mechanosensitive TRPV4 channel in human PDL cells. The molecular identity and mechanisms of activation of mechanosensitive TRP channels in PDL cells merit further investigation.
Resumo:
Objectives: Receptor Activator of NF-kappaB ligand (RANKL), through binding to its receptor (RANK), plays an important role in osteoclast differentiation and activation. Conversely, osteoprotegerin (OPG), a decoy receptor for RANKL, inhibits osteoclastogenesis and subsequent bone turnover. Little is known about the role of resident periodontal ligament fibroblasts in regulating bone turnover. The aim of this study was to determine (i) if periodontal ligament fibroblasts produced OPG in vitro and (ii) the effects of IL-1b and TGF-b1 on OPG expression. Methods: Three human periodontal ligament fibroblast populations, developed by explant culture, were grown to confluence in 6-well plates in DMEM supplemented with 10% FCS. Cells were washed in HBSS and then cultured for an additional 48 hours in serum-free media supplemented with IL-1b or TGF-b1 at 10ng/ml. OPG expression levels in the conditioned medium were determined by ELISA (R&D Systems, UK) and confirmed by Western blot. Results: All three fibroblast strains produced quantifiable levels of OPG. Both IL-1b and, to a lesser extent, TGF-b1 significantly stimulated OPG expression in all fibroblast strains (p<0.05). Pre-incubation of samples with N-glycosidase F prior to Western blots indicated glycosylation of expressed OPG. Conclusions: These data indicate that periodontal ligament fibroblasts can regulate osteoclast activation via the RANK/RANKL signalling pathway. These fibroblasts may play an important role in regulating bone turnover both in periodontal disease and orthodontic tooth movement.