64 resultados para Antunes, Ricardo L. C - Ricardo Luis Coltro - 1953
Resumo:
Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.
Resumo:
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.
Resumo:
A new radiocarbon preparation facility was set up in 2010 at the Godwin Laboratory for Palaeoclimate Research, at the University of Cambridge. Samples are graphitized via hydrogen reduction on an iron powder catalyst before being sent to the Chrono Centre, Belfast, or the Australian National University for accelerator mass spectrometry (AMS) analysis. The experimental setup and procedure have recently been developed to investigate the potential for running small samples of foraminiferal carbonate. By analyzing background values of samples ranging from 0.04 to 0.6 mg C along with similar sized secondary standards, the setup and experimental procedures were optimized for small samples. “Background” modern 14C contamination has been minimized through careful selection of iron powder, and graphitization has been optimized through the use of “small volume” reactors, allowing samples containing as little as 0.08 mg C to be graphitized and accurately dated. Graphitization efficiency/fractionation is found not to be the main limitation on the analysis of samples smaller than 0.07 mg C, which rather depends primarily on AMS ion beam optics, suggesting further improvements in small sample analysis might yet be achieved with our methodology.
Resumo:
BACKGROUND: Smoking is the most important individual risk factor for many cancer sites but its association with breast and prostate cancer is not entirely clear. Rate advancement periods (RAPs) may enhance communication of smoking related risk to the general population. Thus, we estimated RAPs for the association of smoking exposure (smoking status, time since smoking cessation, smoking intensity, and duration) with total and site-specific (lung, breast, colorectal, prostate, gastric, head and neck, and pancreatic) cancer incidence and mortality.
METHODS: This is a meta-analysis of 19 population-based prospective cohort studies with individual participant data for 897,021 European and American adults. For each cohort we calculated hazard ratios (HRs) for the association of smoking exposure with cancer outcomes using Cox regression adjusted for a common set of the most important potential confounding variables. RAPs (in years) were calculated as the ratio of the logarithms of the HRs for a given smoking exposure variable and age. Meta-analyses were employed to summarize cohort-specific HRs and RAPs.
RESULTS: Overall, 140,205 subjects had a first incident cancer, and 53,164 died from cancer, during an average follow-up of 12 years. Current smoking advanced the overall risk of developing and dying from cancer by eight and ten years, respectively, compared with never smokers. The greatest advancements in cancer risk and mortality were seen for lung cancer and the least for breast cancer. Smoking cessation was statistically significantly associated with delays in the risk of cancer development and mortality compared with continued smoking.
CONCLUSIONS: This investigation shows that smoking, even among older adults, considerably advances, and cessation delays, the risk of developing and dying from cancer. These findings may be helpful in more effectively communicating the harmful effects of smoking and the beneficial effect of smoking cessation.