100 resultados para Aniline methylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crombie, Leslie; Haigh, David; Jones, Raymond C. F.; Mat-Zin, A.Rasid. Dep. Chem., Univ. Nottingham, Nottingham, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) (1993), (17), 2047-54. CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 120:164608 AN 1994:164608 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract The alkaloid homaline I was prepd. in (?) and natural (S,S)-(-) forms. Linking of 2-azacyclooctanone units either directly or successively using 1,4-dihalogenobutanes or 1,4-dihalogenobut-2-ynes is examd. (?)-5-Methyl-4-phenyl-1,5-diazacyclooctan-2-one is first made by a 2,2'-dithiodipyridine/triphenylphosphine-mediated cyclization, and then by amination and transamidative ring expansion from N-(3-chloropropyl)-4-phenylazetidin-2-one in liq. ammonia, followed by N-methylation. Coupling through a 1,4-dihalogenobutane of either the N-methylated azalactam, or the unmethylated azalactam followed by methylation, gave homaline in (?) and meso forms. (R)-(-)-phenylglycine was converted via (S)-?-phenyl-?-alanine into an (S)-?-lactam which was then alkylated with 1-bromo-3-chloropropane, and aminated and ring expanded in liq. ammonia. Coupling of the homochiral azalactam (2 mol) so formed with 1,4-dibromobutane, followed by N-methylation, gave (S,S)-(-)-homaline identical with the natural material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of the unsym. Homalium alkaloids hopromine (I, R = H, R1 = pentyl), hoprominol (I, R = OH, R1 = pentyl) and hopramalinol (I, R = OH, R1 = Ph), in diastereoisomeric mixt. form, is reported. The component eight-membered azalactams are first prepd. N-(3-halogenopropyl)-4-pentyl- and 4-heptylazetidin-2-ones are aminated and ring expanded in liq. ammonia to give, after reductive methylation, the corresponding 4-alkyl-5-methyl-1,5-diazacyclooctan-2-ones. Synthesis of the 4-(2-hydroxyheptyl)-5-methyl-1,5-diazacyclooctan-2-one required for hoprominol and hopromalinol is carried out via 4-allyl ?-lactam ring expansion to the eight-membered 4-allylazalactam, followed by methylation, epoxidn. and epoxide opening with lithium dibutylcuprate. A similar epoxidn.-cuprate sequence was carried out on the epoxypropyl ?-lactam, as its N-tert-butyldimethylsilyl deriv., and led to a convenient copper-catalyzed N- to O-migration of the protection; this migration is examd. Alkylation gave O-tert-butyldimethylsilyl-protected N-(3-chloropropyl)-4-(2-hydroxyheptyl)azetidin-2-one which could be aminated and transamidated in excellent yield, to give, after methylation, a superior sequence to the required eight-membered hydroxy azalactam. Although satisfactory for attachment of the first azalactam unit, a dibromobutane coupling system proved unreactive for the second. Couplings with unmethylated, methylated, and benzyloxycabronyl-protected azalactams were examd. using (E)-1,4-dibromobutene and (Z)-1,4-dichlorobutene as the bridging unit. Employing the latter, coupling the first N-methylated azalactam with potassium bis(trimethylsilyl)amide as the base, and then the second with bis(trimethylsilyl)amide-sodium hydride as the base system, provided a satisfactory synthetic outcome. Hydrogenation under acidic conditions gave the unsym. structures hopromine, hoprominol and hopromalinol, as well as the more simple and sym. alkaloid, homaline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substituted phenols undergo a facile Rh carbenoid-mediated O-H insertion reaction with (EtO)2P(O)C(:N2)CO2R (I; R = Et, Me) to give 44-86% 2-aryloxyphosphonoacetates II (R1 = e.g., H, 4-Me, 4-Cl, 2-OH, 4-PhCH2O). Phenols contg. strongly electron withdrawing groups, bulky ortho-substituents or certain ortho-heteroatom substituents show reduced or variable yields. Catechol affords a mono-adduct which cyclizes to lactate III. Aniline inserts preferentially and exclusively over phenol in a competition reaction with I (R = Et) to give (EtO)2P(O)CH(NHPh)CO2Et. II are versatile intermediates in a prepn. of 2-aryloxy-3-phenylpropenoates IV by Wadsworth-Emmons reaction with benzaldehydes R2C6H4CHO (R2 = PhCH2O, 2-Cl, H). Dissolving Mg metal redn. provides a mild method for the conversion of propenoates IV into the corresponding propanoates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3' processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA-FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3' processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes that mediate reversible epigenetic modifications have not only been recognized as key in regulating gene expression(1) and oncogenesis(2,3), but also provide potential targets for molecular therapy(4). Although the methylation of arginine 3 of histone 4 ( H4R3) by protein arginine methyltransferase 1 ( PRMT1) is a critical modification for active chromatin(5,6) and prevention of heterochromatin spread(7), there has been no direct evidence of any role of PRMTs in cancer. Here, we show that PRMT1 is an essential component of a novel Mixed Lineage Leukaemia ( MLL) oncogenic transcriptional complex with both histone acetylation and H4R3 methylation activities, which also correlate with the expression of critical MLL downstream targets. Direct fusion of MLL with PRMT1 or Sam68, a bridging molecule in the complex for PRMT1 interaction, could enhance self-renewal of primary haematopoietic cells. Conversely, specific knockdown of PRMT1 or Sam68 expression suppressed MLL-mediated transformation. This study not only functionally dissects the oncogenic transcriptional machinery associated with an MLL fusion complex, but also uncovers-for the first time-an essential function of PRMTs in oncogenesis and reveals their potential as novel therapeutic targets in human cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: C/EBP alpha (cebpa) is a putative tumor suppressor. However, initial results indicated that cebpa was up-regulated in a subset of human hepatocellular carcinomas (HCCs). The regulation and function of C/EBP alpha was investigated in HCC cell lines to clarify its role in liver carcinogenesis. METHODS: The regulation of C/EBP alpha expression was studied by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemistry, methylation-specific PCR, and chromatin immunoprecipitation assays. C/EBP alpha expression was knocked-down by small interfering RNA or short hairpin RNA. Functional assays included colony formation, methylthiotetrazole, bromodeoxyuridine incorporation, and luciferase-reporter assays. RESULTS: Cebpa was up-regulated at least 2-fold in a subset (approximately 55%) of human HCCs compared with adjacent non tumor tissues. None of the up-regulated samples were positive for hepatitis C infection. The HCC cell lines Hep3B and Huh7 expressed high, PLC/PRF/5 intermediate, HepG2 and HCC-M low levels of C/EBP alpha, recapitulating the pattern of expression observed in HCCs. No mutations were detected in the CEBP alpha gene in HCCs and cell lines. C/EBP alpha was localized to the nucleus and functional in Hep3B and Huh7 cells; knocking-down its expression reduced target-gene expression, colony formation, and cell growth, associated with a decrease in cyclin A and CDK4 concentrations and E2F transcriptional activity. Epigenetic mechanisms including DNA methylation, and the binding of acetylated histone H3 to the CEBP alpha promoter-regulated cebpa expression in the HCC cells. CONCLUSIONS: C/EBP alpha is up-regulated in a subset of HCCs and has growth-promoting activities in HCC cells. Novel oncogenic mechanisms involving C/EBP alpha may be amenable to epigenetic regulation to improve treatment outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RUNX3 is believed to have tumour suppressor properties in several cancer types. Inactivation of RUNX3 has been shown to occur by methylation-induced transcriptional silencing and by mislocalization of the protein to the cytoplasm. The aim of this study was to examine the clinical significance of RUNX3 expression in a large series of colorectal cancers using immunohistochemistry and tissue arrays. With advancing tumour stage, expression of RUNX3 in the nucleus decreased, whereas expression restricted to the cytoplasmic compartment increased. Nuclear RUNX3 expression was associated with significantly better patient survival compared to tumours in which the expression of RUNX3 was restricted to the cytoplasm (P = 0.025). These results support a role for RUNX3 as a tumour suppressor in colorectal cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: We hypothesized that RUNX3 inactivation by promoter hypermethylation in colorectal polyps is an early molecular event in colorectal carcinogenesis.
METHODS: RUNX3 protein expression was analyzed immunohistochemically in 50 sporadic colorectal polyps comprising 19 hyperplastic polyps (HPs), 14 traditional serrated adenomas (TSAs), and 17 sporadic traditional adenomas (sTAs) as well as in 19 familial adenomatous polyposis (FAP) samples from 10 patients showing aberrant crypt foci (ACF) (n=91), small adenomas (SmAds) (n=40), and large adenomas (LAds) (n=13). In addition, we assessed the frequency of promoter hypermethylation of RUNX3 by methylation-specific PCR (MSP) in all the 50 sporadic polyps as well as 38 microdissected FAP polyps comprising ACF, SmAds, and LAds obtained from 7 FAP samples. A total of 12 normal colon samples were also included for RUNX3 MSP analysis.
RESULTS: Compared to normal colon (2 of 12, 16%) and sTAs (3 of 17, 18%), HPs (15 of 19, 79%) and TSAs (8 of 14, 57%) displayed significant inactivation of RUNX3 (P<0.05). In FAP, RUNX3 inactivation was more frequently seen in ACF (78 of 91, 86%), SmAds (25 of 40, 62%), and LAds (6 of 13, 46%) compared to normal mucosa (0 of 19, 0%) in the same samples (all P<0.05). Promoter hypermethylation of RUNX3 was significantly higher in colorectal polyps (64 of 87, 74%) compared to normal colon (2 of 12, 16%) (P=0.001). Serrated polyps such as HPs (17 of 19, 89%) and TSAs (12 of 14, 86%) were significantly more methylated than sTAs (7 of 17, 44%) (P=0.004). RUNX3 hypermethylation was observed in 28 of the total 38 (74%) FAP polyps. Overall, RUNX3 promoter methylation correlated with inactivation of RUNX3 expression in sporadic (27 of 36, 75%) (P=0.022) and FAP (21 of 28, 75%) (P=0.021) polyps.
CONCLUSIONS: Our data suggest that RUNX3 inactivation due to promoter hypermethylation in colorectal polyps represents an early event in colorectal cancer (CRC) progression. In addition, epigenetic RUNX3 inactivation is a frequent event in the serrated colonic polyps as well as in the ACF of FAP polyps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background We had previously established that inactivation of RUNX3 occurs by frequent promoter hypermethylation and protein mislocalization in invasive ductal carcinomas (IDC) of breast. Here, we hypothesize that inactivation of RUNX3 occurring in ductal carcinoma in situ (DCIS) represent early event in breast carcinogenesis. Methods The study cohort of 40 patients included 17 pure DCIS cases and 23 cases of DCIS with associated IDC (DCIS-IDC). The DCIS and IDC components of mixed cases were manually microdissected to permit separate evaluation. All the 63 samples including 17 pure DCIS, 23 samples each of DCIS and IDC of DCIS-IDC cases were analyzed for RUNX3 protein expression using R3-6E9 monoclonal antibody as well as promoter methylation status by methylation specific PCR. Results Compared to matched normal breast samples (4 of 40, 10%), DCIS (35 of 40, 88%) and IDC (21 of 23, 91%) exhibited significant RUNX3 inactivation (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 5'-O-monomethoxytrityl-3'-S-(aryldisulfanyl)-3'-deoxythymidines 7 and 8 have been prepared by the reaction of 5'-O-monomethoxytrityl-3'-thiothymidine with the appropriate arenesulfenyl chloride. These disulfides undergo a Michaelis–Arbusov reaction with simple trialkyl phosphites to yield 5'-O-monomethoxytrityl-3'-thiothymidin-3'-yl O,O-dialkyl phosphorothiolates. More interestingly, 3'-deoxy-3'-S-(2, 4-dinitrophenylsulfanyl)-5'-O-monomethoxytritylthymidine 8 reacts with a variety of thymidin-5'-yl dialkyl phosphites to give dithymidine phosphorothiolate triesters with the phosphorothiolate group protected with either a methyl or a 2-cyanoethyl group. 3'-O-(tert-Butyldimethylsilyl)thymidin-5'-yl triethylammoniumphosphonate 17 is converted into the corresponding bis-(O-trimethylsilyl) phosphite by treatment with bis(trimethylsilyl)trifluoroacetamide. in situ Reaction of this phosphate with disulfide 8 gives, after work-up, the dithymidine phosphorothiolate diester directly. Methylation of compound 17 with methyl chloromethanoate, followed by silylation and subsequent reaction with disulfide 8, gives the methyl-protected dithymidine phosphorothiolate triester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant expression of the MAD2 protein has been linked to chromosomal instability, malignant transformation and chemoresistance. Although reduced MAD2 expression is well recognised in human cancer cell lines, the mechanism(s) underlying its downregulation remain elusive. The objective of this study was to establish the impact of hypoxia on MAD2 expression and to investigate the potential role of aberrant promoter methylation as a possible mechanism of MAD2 downregulation. For this purpose, three ovarian cancer cell lines, displaying differing levels of MAD2, were treated with chromatin modifying drugs, pre and post-hypoxia exposure and a DHPLC analysis of DNA promoter methylation carried out. We show that hypoxia induces downregulation of MAD2 expression, independently of MAD2 promoter methylation. We also show no evidence of MAD2 promoter methylation in breast and prostate cancer cells or in breast cancer clinical material. While our findings provide no evidence for MAD2 promoter methylation, we show a concomitant upregulation of p21 with downregulation of MAD2 in hypoxia. Our in vitro results were also confirmed in an ovarian cancer tissue microarray (TMA), where a reciprocal staining of MAD2 and CAIX was found in 21/60 (35%) of tumours. In summary, MAD2 downregulation may be a crucial mechanism by which hypoxic cells become chemorefractory. This stems from our previous work where we demonstrated that MAD2 downregulation induces cellular senescence, a viable cellular fate, with resultant cellular resistance to paclitaxel. Moreover, MAD2 downregulation could play a central role in the induction of chemoresistance in hypoxia, a key tumour microenvironment associated with chemoresistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 µg L(-1)) and white Caucasians (20.6 µg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 µg L(-1)) than for the Caucasians (3.50 µg L(-1)). Urinary DMA was significantly higher (p <0.001) in the UK Bangladeshis (median: 16.9 µg DMA L(-1)) than in the white Caucasians (3.16 µg DMA L(-1)) as well as iAs (p <0.001) with a median of 0.630 µg iAs L(-1) for Bangladeshi and 0.250 µg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 µg L(-1)) than in Caucasians (14.9 µg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of the small GTPases leading to their membrane localization has long been attributed to processing of their C-terminal CAAX box. As deregulation of many of these GTPases have been implicated in cancer and other disorders, prenylation and methylation of this CAAX box has been studied in depth as a possibility for drug targeting, but unfortunately, to date no drug has proved clinically beneficial. However, these GTPases also undergo other modifications that may be important for their regulation. Ubiquitination has long been demonstrated to regulate the fate of numerous cellular proteins and recently it has become apparent that many GTPases, along with their GAPs, GeFs and GDis, undergo ubiquitination leading to a variety of fates such as re-localization or degradation. in this review we focus on the recent literature demonstrating that the regulation of small GTPases by ubiquitination, either directly or indirectly, plays a considerable role in controlling their function and that targeting these modifications could be important for disease treatment.