95 resultados para Aluminum absorption
Resumo:
The influence of ultrasound on the percutaneous absorption of three nicotinate esters was investigated in 10 healthy volunteers in a double-blind placebo controlled crossover clinical trial. Using a specially designed experimental protocol, the effect of continuous output ultrasound (at frequency 3.0 MHz and intensity 1.0 W/cm2 for 5 min) on the percutaneous absorption of methyl, ethyl, and hexyl nicotinates, from gel bases, was investigated. A placebo control, involving massage with each of the gels, without ultrasound for 5 min, was also incorporated. The pharmacodynamic parameter of vasodilation caused by the nicotinates was used to monitor the percutaneous absorption of the drugs. Laser Doppler velocimetry, a noninvasive optical technique, was used to measure vasodilation of the cutaneous vessels within the treatment site. Ultrasound treatment led to enhanced vasodilator response to the nicotinates, therefore indicating an enhancement of their percutaneous absorption. These agents may prove to be useful compounds in examination of the mechanism of action of phonophoresis.
Resumo:
Objective: The buccal absorption of captopril does not exhibit the classical pH/partition hypothesis, suggesting that mechanisms other than passive diffusion are involved in its absorption; animal studies have suggested that a peptide carrier-mediated transport system may be responsible for its absorption. The present study evaluated the effects of pH on octanol partitioning, and on the buccal absorption of enalapril and lisinopril, using in vitro techniques and buccal partitioning in human volunteer subjects.
Resumo:
Filamentary ionization tracks have been observed via optical probing inside Al-coated glass targets after the interaction of a picosecond 20-TW laser pulse at intensities above 10(19) W/cm(2). The tracks, up to 700 mu m in length and between 10 and 20 mu m in width, originate from the focal spot region of the laser beam. Simulations performed with 3D particle-in-cell and 2D Fokker-Planck hybrid codes indicate that the observations are consistent with ionization induced in the glass target by magnetized, collimated beams of high-energy electrons produced during the laser interaction.
Resumo:
Experiments were performed in which intense laser pulses (up to 9x10(19) W/cm(2)) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma.