143 resultados para Additional experiments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress using the VULCAN laser at the Rutherford Appleton Laboratory to pump X-ray lasing in nickel-like ions is reviewed. Double pulse pumping with similar to 100 ps pulses has been shown to produce significantly greater X-ray laser output than single pulses of duration 0.1-1 ns. With double pulse pumping, the main pumping pulse interacts with a pre-formed plasma created by a pre-pulse. The efficiency of lasing increases as there is a reduced effect of refraction of the X-ray laser beam due to smaller density gradients and larger gain volumes, which enable propagation of the X-ray laser beam along the full length of the target. The record shortest wavelength saturated laser at 5.9 nm has been achieved in Ni-like dysprosium using double pulse pumping of 75 ps duration from the VULCAN laser. A variant of the double pulse pumping using a single similar to 100 ps laser pulse and a superimposed short similar to 1 ps pulse has been found to further increase the efficiency of lasing by reducing the effects of over-ionisation during the gain period. The record shortest wavelength saturated laser pumped by a short similar to 1 ps pulse has been achieved in Ni-like samarium using the VULCAN laser operating in chirped pulse amplified (CPA) mode. Ni-like samarium lases at 7.3 nm. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron energy transport experiments conducted on the Vulcan 100 TW laser facility with large area foil targets are described. For plastic targets it is shown, by the plasma expansion observed in shadowgrams taken after the interaction, that there is a transition between the collimated electron flow previously reported at the 10 TW power level to an annular electron flow pattern with a 20 degrees divergence angle for peak powers of 68 TW. Intermediate powers show that both the central collimated flow pattern and the surrounding annular-shaped heated region can co-exist. The measurements are consistent with the Davies rigid beam model for fast electron flow (Davies 2003 Phys. Rev. E 68 056404) and LSP modelling provides additional insight into the observed results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron time of flight signals have been observed with a high resolution neutron spectrometer using the petawatt arm of the Vulcan laser facility at Rutherford Appleton Laboratory from plastic sandwich targets containing a deuterated layer. The neutron spectra have two elements: a high-energy component generated by beam-fusion reactions and a thermal component around 2.45 MeV. The ion temperatures calculated from the neutron signal width clearly demonstrate a dependence on the front layer thickness and are significantly higher than electron temperatures measured under similar conditions. The ion heating process is intensity dependent and is not observed with laser intensities on target below 10(20) W cm(-2). The measurements are consistent with an ion instability driven by electron perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results from experiments performed at the Rutherford Appleton Laboratory using the VULCAN laser facility (I>5x10(19) W cm(-2)). Single wire targets were used, and on some shots additional objects were placed near the target. These were positioned so that they were not irradiated by the laser. Proton emission from single wire targets was observed as radially symmetric structures (