68 resultados para Adaptive Signal Processing
Resumo:
The paper presents IPPro which is a high performance, scalable soft-core processor targeted for image processing applications. It has been based on the Xilinx DSP48E1 architecture using the ZYNQ Field Programmable Gate Array and is a scalar 16-bit RISC processor that operates at 526MHz, giving 526MIPS of performance. Each IPPro core uses 1 DSP48, 1 Block RAM and 330 Kintex-7 slice-registers, thus making the processor as compact as possible whilst maintaining flexibility and programmability. A key aspect of the approach is in reducing the application design time and implementation effort by using multiple IPPro processors in a SIMD mode. For different applications, this allows us to exploit different levels of parallelism and mapping for the specified processing architecture with the supported instruction set. In this context, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the colour and morphology operations accelerated using multiple IPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 to 33 times for colour filtering and morphology operations respectively, with a reduced design effort and time.
Resumo:
With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.
Resumo:
The Field Programmable Gate Array (FPGA) implementation of the commonly used Histogram of Oriented Gradients (HOG) algorithm is explored. The HOG algorithm is employed to extract features for object detection. A key focus has been to explore the use of a new FPGA-based processor which has been targeted at image processing. The paper gives details of the mapping and scheduling factors that influence the performance and the stages that were undertaken to allow the algorithm to be deployed on FPGA hardware, whilst taking into account the specific IPPro architecture features. We show that multi-core IPPro performance can exceed that of against state-of-the-art FPGA designs by up to 3.2 times with reduced design and implementation effort and increased flexibility all on a low cost, Zynq programmable system.
Resumo:
Due to its efficiency and simplicity, the finite-difference time-domain method is becoming a popular choice for solving wideband, transient problems in various fields of acoustics. So far, the issue of extracting a binaural response from finite difference simulations has only been discussed in the context of embedding a listener geometry in the grid. In this paper, we propose and study a method for binaural response rendering based on a spatial decomposition of the sound field. The finite difference grid is locally sampled using a volumetric array of receivers, from which a plane wave density function is computed and integrated with free-field head related transfer functions, in the spherical harmonics domain. The volumetric array is studied in terms of numerical robustness and spatial aliasing. Analytic formulas that predict the performance of the array are developed, facilitating spatial resolution analysis and numerical binaural response analysis for a number of finite difference schemes. Particular emphasis is placed on the effects of numerical dispersion on array processing and on the resulting binaural responses. Our method is compared to a binaural simulation based on the image method. Results indicate good spatial and temporal agreement between the two methods.
Resumo:
The increasing design complexity associated with modern Field Programmable Gate Array (FPGA) has prompted the emergence of 'soft'-programmable processors which attempt to replace at least part of the custom circuit design problem with a problem of programming parallel processors. Despite substantial advances in this technology, its performance and resource efficiency for computationally complex operations remains in doubt. In this paper we present the first recorded implementation of a softcore Fast-Fourier Transform (FFT) on Xilinx Virtex FPGA technology. By employing a streaming processing architecture, we show how it is possible to achieve architectures which offer 1.1 GSamples/s throughput and up to 19 times speed-up against the Xilinx Radix-2 FFT dedicated circuit with comparable cost.
Resumo:
In this paper, we present a hybrid mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber loop. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Moreover, our proposed method outperforms the minimum mean-squared error design for a range of TEQ filter lengths.
Resumo:
With security and surveillance, there is an increasing need to process image data efficiently and effectively either at source or in a large data network. Whilst a Field-Programmable Gate Array (FPGA) has been seen as a key technology for enabling this, the design process has been viewed as problematic in terms of the time and effort needed for implementation and verification. The work here proposes a different approach of using optimized FPGA-based soft-core processors which allows the user to exploit the task and data level parallelism to achieve the quality of dedicated FPGA implementations whilst reducing design time. The paper also reports some preliminary
progress on the design flow to program the structure. An implementation for a Histogram of Gradients algorithm is also reported which shows that a performance of 328 fps can be achieved with this design approach, whilst avoiding the long design time, verification and debugging steps associated with conventional FPGA implementations.